Metamath Proof Explorer


Theorem cvgcmpub

Description: An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014)

Ref Expression
Hypotheses cvgcmp.1 𝑍 = ( ℤ𝑀 )
cvgcmp.2 ( 𝜑𝑁𝑍 )
cvgcmp.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
cvgcmp.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ∈ ℝ )
cvgcmpub.5 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 )
cvgcmpub.6 ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ 𝐵 )
cvgcmpub.7 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ≤ ( 𝐹𝑘 ) )
Assertion cvgcmpub ( 𝜑𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 cvgcmp.1 𝑍 = ( ℤ𝑀 )
2 cvgcmp.2 ( 𝜑𝑁𝑍 )
3 cvgcmp.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) ∈ ℝ )
4 cvgcmp.4 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ∈ ℝ )
5 cvgcmpub.5 ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 )
6 cvgcmpub.6 ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ 𝐵 )
7 cvgcmpub.7 ( ( 𝜑𝑘𝑍 ) → ( 𝐺𝑘 ) ≤ ( 𝐹𝑘 ) )
8 2 1 eleqtrdi ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
9 eluzel2 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℤ )
10 8 9 syl ( 𝜑𝑀 ∈ ℤ )
11 1 10 4 serfre ( 𝜑 → seq 𝑀 ( + , 𝐺 ) : 𝑍 ⟶ ℝ )
12 11 ffvelrnda ( ( 𝜑𝑛𝑍 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ∈ ℝ )
13 1 10 3 serfre ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ )
14 13 ffvelrnda ( ( 𝜑𝑛𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ∈ ℝ )
15 simpr ( ( 𝜑𝑛𝑍 ) → 𝑛𝑍 )
16 15 1 eleqtrdi ( ( 𝜑𝑛𝑍 ) → 𝑛 ∈ ( ℤ𝑀 ) )
17 simpl ( ( 𝜑𝑛𝑍 ) → 𝜑 )
18 elfzuz ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘 ∈ ( ℤ𝑀 ) )
19 18 1 eleqtrrdi ( 𝑘 ∈ ( 𝑀 ... 𝑛 ) → 𝑘𝑍 )
20 17 19 4 syl2an ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺𝑘 ) ∈ ℝ )
21 17 19 3 syl2an ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐹𝑘 ) ∈ ℝ )
22 17 19 7 syl2an ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑛 ) ) → ( 𝐺𝑘 ) ≤ ( 𝐹𝑘 ) )
23 16 20 21 22 serle ( ( 𝜑𝑛𝑍 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ≤ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) )
24 1 10 6 5 12 14 23 climle ( 𝜑𝐵𝐴 )