Metamath Proof Explorer


Theorem cvlatcvr2

Description: An atom is covered by its join with a different atom. (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses cvlatcvr1.j = ( join ‘ 𝐾 )
cvlatcvr1.c 𝐶 = ( ⋖ ‘ 𝐾 )
cvlatcvr1.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion cvlatcvr2 ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃𝑄𝑃 𝐶 ( 𝑄 𝑃 ) ) )

Proof

Step Hyp Ref Expression
1 cvlatcvr1.j = ( join ‘ 𝐾 )
2 cvlatcvr1.c 𝐶 = ( ⋖ ‘ 𝐾 )
3 cvlatcvr1.a 𝐴 = ( Atoms ‘ 𝐾 )
4 1 2 3 cvlatcvr1 ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃𝑄𝑃 𝐶 ( 𝑃 𝑄 ) ) )
5 simp13 ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑃𝐴𝑄𝐴 ) → 𝐾 ∈ CvLat )
6 cvllat ( 𝐾 ∈ CvLat → 𝐾 ∈ Lat )
7 5 6 syl ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑃𝐴𝑄𝐴 ) → 𝐾 ∈ Lat )
8 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
9 8 3 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
10 9 3ad2ant2 ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑃𝐴𝑄𝐴 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
11 8 3 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
12 11 3ad2ant3 ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑃𝐴𝑄𝐴 ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
13 8 1 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
14 7 10 12 13 syl3anc ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) = ( 𝑄 𝑃 ) )
15 14 breq2d ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝐶 ( 𝑃 𝑄 ) ↔ 𝑃 𝐶 ( 𝑄 𝑃 ) ) )
16 4 15 bitrd ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃𝑄𝑃 𝐶 ( 𝑄 𝑃 ) ) )