Step |
Hyp |
Ref |
Expression |
1 |
|
cvlatcvr1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
cvlatcvr1.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
3 |
|
cvlatcvr1.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
1 2 3
|
cvlatcvr1 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ≠ 𝑄 ↔ 𝑃 𝐶 ( 𝑃 ∨ 𝑄 ) ) ) |
5 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ CvLat ) |
6 |
|
cvllat |
⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ Lat ) |
7 |
5 6
|
syl |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
9 |
8 3
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
10 |
9
|
3ad2ant2 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
11 |
8 3
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
12 |
11
|
3ad2ant3 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
13 |
8 1
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
14 |
7 10 12 13
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
15 |
14
|
breq2d |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 𝐶 ( 𝑃 ∨ 𝑄 ) ↔ 𝑃 𝐶 ( 𝑄 ∨ 𝑃 ) ) ) |
16 |
4 15
|
bitrd |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ≠ 𝑄 ↔ 𝑃 𝐶 ( 𝑄 ∨ 𝑃 ) ) ) |