Metamath Proof Explorer


Theorem cvlatexchb1

Description: A version of cvlexchb1 for atoms. (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses cvlatexch.l = ( le ‘ 𝐾 )
cvlatexch.j = ( join ‘ 𝐾 )
cvlatexch.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion cvlatexchb1 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) → ( 𝑃 ( 𝑅 𝑄 ) ↔ ( 𝑅 𝑃 ) = ( 𝑅 𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 cvlatexch.l = ( le ‘ 𝐾 )
2 cvlatexch.j = ( join ‘ 𝐾 )
3 cvlatexch.a 𝐴 = ( Atoms ‘ 𝐾 )
4 cvlatl ( 𝐾 ∈ CvLat → 𝐾 ∈ AtLat )
5 4 adantr ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → 𝐾 ∈ AtLat )
6 simpr1 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → 𝑃𝐴 )
7 simpr3 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → 𝑅𝐴 )
8 1 3 atncmp ( ( 𝐾 ∈ AtLat ∧ 𝑃𝐴𝑅𝐴 ) → ( ¬ 𝑃 𝑅𝑃𝑅 ) )
9 5 6 7 8 syl3anc ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → ( ¬ 𝑃 𝑅𝑃𝑅 ) )
10 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
11 10 3 atbase ( 𝑅𝐴𝑅 ∈ ( Base ‘ 𝐾 ) )
12 10 1 2 3 cvlexchb1 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅 ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑃 𝑅 ) → ( 𝑃 ( 𝑅 𝑄 ) ↔ ( 𝑅 𝑃 ) = ( 𝑅 𝑄 ) ) )
13 12 3expia ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅 ∈ ( Base ‘ 𝐾 ) ) ) → ( ¬ 𝑃 𝑅 → ( 𝑃 ( 𝑅 𝑄 ) ↔ ( 𝑅 𝑃 ) = ( 𝑅 𝑄 ) ) ) )
14 11 13 syl3anr3 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → ( ¬ 𝑃 𝑅 → ( 𝑃 ( 𝑅 𝑄 ) ↔ ( 𝑅 𝑃 ) = ( 𝑅 𝑄 ) ) ) )
15 9 14 sylbird ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ) → ( 𝑃𝑅 → ( 𝑃 ( 𝑅 𝑄 ) ↔ ( 𝑅 𝑃 ) = ( 𝑅 𝑄 ) ) ) )
16 15 3impia ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ 𝑃𝑅 ) → ( 𝑃 ( 𝑅 𝑄 ) ↔ ( 𝑅 𝑃 ) = ( 𝑅 𝑄 ) ) )