Step |
Hyp |
Ref |
Expression |
1 |
|
cvlatexch.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cvlatexch.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cvlatexch.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
cvlatl |
⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ AtLat ) |
5 |
4
|
adantr |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝐾 ∈ AtLat ) |
6 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) |
7 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → 𝑅 ∈ 𝐴 ) |
8 |
1 3
|
atncmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑅 ↔ 𝑃 ≠ 𝑅 ) ) |
9 |
5 6 7 8
|
syl3anc |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ¬ 𝑃 ≤ 𝑅 ↔ 𝑃 ≠ 𝑅 ) ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
11 |
10 3
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
12 |
10 1 2 3
|
cvlexchb1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑃 ≤ 𝑅 ) → ( 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ↔ ( 𝑅 ∨ 𝑃 ) = ( 𝑅 ∨ 𝑄 ) ) ) |
13 |
12
|
3expia |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) ) → ( ¬ 𝑃 ≤ 𝑅 → ( 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ↔ ( 𝑅 ∨ 𝑃 ) = ( 𝑅 ∨ 𝑄 ) ) ) ) |
14 |
11 13
|
syl3anr3 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ¬ 𝑃 ≤ 𝑅 → ( 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ↔ ( 𝑅 ∨ 𝑃 ) = ( 𝑅 ∨ 𝑄 ) ) ) ) |
15 |
9 14
|
sylbird |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑃 ≠ 𝑅 → ( 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ↔ ( 𝑅 ∨ 𝑃 ) = ( 𝑅 ∨ 𝑄 ) ) ) ) |
16 |
15
|
3impia |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑃 ≤ ( 𝑅 ∨ 𝑄 ) ↔ ( 𝑅 ∨ 𝑃 ) = ( 𝑅 ∨ 𝑄 ) ) ) |