Metamath Proof Explorer


Theorem cvlatl

Description: An atomic lattice with the covering property is an atomic lattice. (Contributed by NM, 5-Nov-2012)

Ref Expression
Assertion cvlatl ( 𝐾 ∈ CvLat → 𝐾 ∈ AtLat )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
2 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
3 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
4 eqid ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 )
5 1 2 3 4 iscvlat ( 𝐾 ∈ CvLat ↔ ( 𝐾 ∈ AtLat ∧ ∀ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ( ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑥𝑝 ( le ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑞 ) ) → 𝑞 ( le ‘ 𝐾 ) ( 𝑥 ( join ‘ 𝐾 ) 𝑝 ) ) ) )
6 5 simplbi ( 𝐾 ∈ CvLat → 𝐾 ∈ AtLat )