| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cvlcvrp.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cvlcvrp.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cvlcvrp.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cvlcvrp.z | 
							⊢  0   =  ( 0. ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cvlcvrp.c | 
							⊢ 𝐶  =  (  ⋖  ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cvlcvrp.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							simp13 | 
							⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  𝐾  ∈  CvLat )  | 
						
						
							| 8 | 
							
								
							 | 
							cvllat | 
							⊢ ( 𝐾  ∈  CvLat  →  𝐾  ∈  Lat )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  𝐾  ∈  Lat )  | 
						
						
							| 10 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 11 | 
							
								1 6
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  𝐵 )  | 
						
						
							| 12 | 
							
								11
							 | 
							3ad2ant3 | 
							⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  𝑃  ∈  𝐵 )  | 
						
						
							| 13 | 
							
								1 3
							 | 
							latmcom | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐵 )  →  ( 𝑋  ∧  𝑃 )  =  ( 𝑃  ∧  𝑋 ) )  | 
						
						
							| 14 | 
							
								9 10 12 13
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  ( 𝑋  ∧  𝑃 )  =  ( 𝑃  ∧  𝑋 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							eqeq1d | 
							⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  ( ( 𝑋  ∧  𝑃 )  =   0   ↔  ( 𝑃  ∧  𝑋 )  =   0  ) )  | 
						
						
							| 16 | 
							
								
							 | 
							cvlatl | 
							⊢ ( 𝐾  ∈  CvLat  →  𝐾  ∈  AtLat )  | 
						
						
							| 17 | 
							
								7 16
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  𝐾  ∈  AtLat )  | 
						
						
							| 18 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 )  | 
						
						
							| 20 | 
							
								1 19 3 4 6
							 | 
							atnle | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑃  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  →  ( ¬  𝑃 ( le ‘ 𝐾 ) 𝑋  ↔  ( 𝑃  ∧  𝑋 )  =   0  ) )  | 
						
						
							| 21 | 
							
								17 18 10 20
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  ( ¬  𝑃 ( le ‘ 𝐾 ) 𝑋  ↔  ( 𝑃  ∧  𝑋 )  =   0  ) )  | 
						
						
							| 22 | 
							
								1 19 2 5 6
							 | 
							cvlcvr1 | 
							⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  ( ¬  𝑃 ( le ‘ 𝐾 ) 𝑋  ↔  𝑋 𝐶 ( 𝑋  ∨  𝑃 ) ) )  | 
						
						
							| 23 | 
							
								15 21 22
							 | 
							3bitr2d | 
							⊢ ( ( ( 𝐾  ∈  OML  ∧  𝐾  ∈  CLat  ∧  𝐾  ∈  CvLat )  ∧  𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴 )  →  ( ( 𝑋  ∧  𝑃 )  =   0   ↔  𝑋 𝐶 ( 𝑋  ∨  𝑃 ) ) )  |