Step |
Hyp |
Ref |
Expression |
1 |
|
cvlcvrp.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvlcvrp.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cvlcvrp.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cvlcvrp.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
5 |
|
cvlcvrp.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
6 |
|
cvlcvrp.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
7 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝐾 ∈ CvLat ) |
8 |
|
cvllat |
⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ Lat ) |
9 |
7 8
|
syl |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
10 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
11 |
1 6
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
12 |
11
|
3ad2ant3 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ 𝐵 ) |
13 |
1 3
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑃 ) = ( 𝑃 ∧ 𝑋 ) ) |
14 |
9 10 12 13
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 ∧ 𝑃 ) = ( 𝑃 ∧ 𝑋 ) ) |
15 |
14
|
eqeq1d |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑋 ∧ 𝑃 ) = 0 ↔ ( 𝑃 ∧ 𝑋 ) = 0 ) ) |
16 |
|
cvlatl |
⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ AtLat ) |
17 |
7 16
|
syl |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝐾 ∈ AtLat ) |
18 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) |
19 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
20 |
1 19 3 4 6
|
atnle |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑋 ↔ ( 𝑃 ∧ 𝑋 ) = 0 ) ) |
21 |
17 18 10 20
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑋 ↔ ( 𝑃 ∧ 𝑋 ) = 0 ) ) |
22 |
1 19 2 5 6
|
cvlcvr1 |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑋 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) ) |
23 |
15 21 22
|
3bitr2d |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑋 ∧ 𝑃 ) = 0 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) ) |