Metamath Proof Explorer


Theorem cvlexch1

Description: An atomic covering lattice has the exchange property. (Contributed by NM, 6-Nov-2011)

Ref Expression
Hypotheses cvlexch.b 𝐵 = ( Base ‘ 𝐾 )
cvlexch.l = ( le ‘ 𝐾 )
cvlexch.j = ( join ‘ 𝐾 )
cvlexch.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion cvlexch1 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) → ( 𝑃 ( 𝑋 𝑄 ) → 𝑄 ( 𝑋 𝑃 ) ) )

Proof

Step Hyp Ref Expression
1 cvlexch.b 𝐵 = ( Base ‘ 𝐾 )
2 cvlexch.l = ( le ‘ 𝐾 )
3 cvlexch.j = ( join ‘ 𝐾 )
4 cvlexch.a 𝐴 = ( Atoms ‘ 𝐾 )
5 1 2 3 4 iscvlat ( 𝐾 ∈ CvLat ↔ ( 𝐾 ∈ AtLat ∧ ∀ 𝑝𝐴𝑞𝐴𝑥𝐵 ( ( ¬ 𝑝 𝑥𝑝 ( 𝑥 𝑞 ) ) → 𝑞 ( 𝑥 𝑝 ) ) ) )
6 5 simprbi ( 𝐾 ∈ CvLat → ∀ 𝑝𝐴𝑞𝐴𝑥𝐵 ( ( ¬ 𝑝 𝑥𝑝 ( 𝑥 𝑞 ) ) → 𝑞 ( 𝑥 𝑝 ) ) )
7 breq1 ( 𝑝 = 𝑃 → ( 𝑝 𝑥𝑃 𝑥 ) )
8 7 notbid ( 𝑝 = 𝑃 → ( ¬ 𝑝 𝑥 ↔ ¬ 𝑃 𝑥 ) )
9 breq1 ( 𝑝 = 𝑃 → ( 𝑝 ( 𝑥 𝑞 ) ↔ 𝑃 ( 𝑥 𝑞 ) ) )
10 8 9 anbi12d ( 𝑝 = 𝑃 → ( ( ¬ 𝑝 𝑥𝑝 ( 𝑥 𝑞 ) ) ↔ ( ¬ 𝑃 𝑥𝑃 ( 𝑥 𝑞 ) ) ) )
11 oveq2 ( 𝑝 = 𝑃 → ( 𝑥 𝑝 ) = ( 𝑥 𝑃 ) )
12 11 breq2d ( 𝑝 = 𝑃 → ( 𝑞 ( 𝑥 𝑝 ) ↔ 𝑞 ( 𝑥 𝑃 ) ) )
13 10 12 imbi12d ( 𝑝 = 𝑃 → ( ( ( ¬ 𝑝 𝑥𝑝 ( 𝑥 𝑞 ) ) → 𝑞 ( 𝑥 𝑝 ) ) ↔ ( ( ¬ 𝑃 𝑥𝑃 ( 𝑥 𝑞 ) ) → 𝑞 ( 𝑥 𝑃 ) ) ) )
14 oveq2 ( 𝑞 = 𝑄 → ( 𝑥 𝑞 ) = ( 𝑥 𝑄 ) )
15 14 breq2d ( 𝑞 = 𝑄 → ( 𝑃 ( 𝑥 𝑞 ) ↔ 𝑃 ( 𝑥 𝑄 ) ) )
16 15 anbi2d ( 𝑞 = 𝑄 → ( ( ¬ 𝑃 𝑥𝑃 ( 𝑥 𝑞 ) ) ↔ ( ¬ 𝑃 𝑥𝑃 ( 𝑥 𝑄 ) ) ) )
17 breq1 ( 𝑞 = 𝑄 → ( 𝑞 ( 𝑥 𝑃 ) ↔ 𝑄 ( 𝑥 𝑃 ) ) )
18 16 17 imbi12d ( 𝑞 = 𝑄 → ( ( ( ¬ 𝑃 𝑥𝑃 ( 𝑥 𝑞 ) ) → 𝑞 ( 𝑥 𝑃 ) ) ↔ ( ( ¬ 𝑃 𝑥𝑃 ( 𝑥 𝑄 ) ) → 𝑄 ( 𝑥 𝑃 ) ) ) )
19 breq2 ( 𝑥 = 𝑋 → ( 𝑃 𝑥𝑃 𝑋 ) )
20 19 notbid ( 𝑥 = 𝑋 → ( ¬ 𝑃 𝑥 ↔ ¬ 𝑃 𝑋 ) )
21 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 𝑄 ) = ( 𝑋 𝑄 ) )
22 21 breq2d ( 𝑥 = 𝑋 → ( 𝑃 ( 𝑥 𝑄 ) ↔ 𝑃 ( 𝑋 𝑄 ) ) )
23 20 22 anbi12d ( 𝑥 = 𝑋 → ( ( ¬ 𝑃 𝑥𝑃 ( 𝑥 𝑄 ) ) ↔ ( ¬ 𝑃 𝑋𝑃 ( 𝑋 𝑄 ) ) ) )
24 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 𝑃 ) = ( 𝑋 𝑃 ) )
25 24 breq2d ( 𝑥 = 𝑋 → ( 𝑄 ( 𝑥 𝑃 ) ↔ 𝑄 ( 𝑋 𝑃 ) ) )
26 23 25 imbi12d ( 𝑥 = 𝑋 → ( ( ( ¬ 𝑃 𝑥𝑃 ( 𝑥 𝑄 ) ) → 𝑄 ( 𝑥 𝑃 ) ) ↔ ( ( ¬ 𝑃 𝑋𝑃 ( 𝑋 𝑄 ) ) → 𝑄 ( 𝑋 𝑃 ) ) ) )
27 13 18 26 rspc3v ( ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) → ( ∀ 𝑝𝐴𝑞𝐴𝑥𝐵 ( ( ¬ 𝑝 𝑥𝑝 ( 𝑥 𝑞 ) ) → 𝑞 ( 𝑥 𝑝 ) ) → ( ( ¬ 𝑃 𝑋𝑃 ( 𝑋 𝑄 ) ) → 𝑄 ( 𝑋 𝑃 ) ) ) )
28 6 27 mpan9 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → ( ( ¬ 𝑃 𝑋𝑃 ( 𝑋 𝑄 ) ) → 𝑄 ( 𝑋 𝑃 ) ) )
29 28 exp4b ( 𝐾 ∈ CvLat → ( ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) → ( ¬ 𝑃 𝑋 → ( 𝑃 ( 𝑋 𝑄 ) → 𝑄 ( 𝑋 𝑃 ) ) ) ) )
30 29 3imp ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) → ( 𝑃 ( 𝑋 𝑄 ) → 𝑄 ( 𝑋 𝑃 ) ) )