Step |
Hyp |
Ref |
Expression |
1 |
|
cvlexch.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvlexch.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cvlexch.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cvlexch.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
1 2 3 4
|
iscvlat |
⊢ ( 𝐾 ∈ CvLat ↔ ( 𝐾 ∈ AtLat ∧ ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) ) |
6 |
5
|
simprbi |
⊢ ( 𝐾 ∈ CvLat → ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ) |
7 |
|
breq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ≤ 𝑥 ↔ 𝑃 ≤ 𝑥 ) ) |
8 |
7
|
notbid |
⊢ ( 𝑝 = 𝑃 → ( ¬ 𝑝 ≤ 𝑥 ↔ ¬ 𝑃 ≤ 𝑥 ) ) |
9 |
|
breq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ↔ 𝑃 ≤ ( 𝑥 ∨ 𝑞 ) ) ) |
10 |
8 9
|
anbi12d |
⊢ ( 𝑝 = 𝑃 → ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) ↔ ( ¬ 𝑃 ≤ 𝑥 ∧ 𝑃 ≤ ( 𝑥 ∨ 𝑞 ) ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑝 = 𝑃 → ( 𝑥 ∨ 𝑝 ) = ( 𝑥 ∨ 𝑃 ) ) |
12 |
11
|
breq2d |
⊢ ( 𝑝 = 𝑃 → ( 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ↔ 𝑞 ≤ ( 𝑥 ∨ 𝑃 ) ) ) |
13 |
10 12
|
imbi12d |
⊢ ( 𝑝 = 𝑃 → ( ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) ↔ ( ( ¬ 𝑃 ≤ 𝑥 ∧ 𝑃 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑃 ) ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑞 = 𝑄 → ( 𝑥 ∨ 𝑞 ) = ( 𝑥 ∨ 𝑄 ) ) |
15 |
14
|
breq2d |
⊢ ( 𝑞 = 𝑄 → ( 𝑃 ≤ ( 𝑥 ∨ 𝑞 ) ↔ 𝑃 ≤ ( 𝑥 ∨ 𝑄 ) ) ) |
16 |
15
|
anbi2d |
⊢ ( 𝑞 = 𝑄 → ( ( ¬ 𝑃 ≤ 𝑥 ∧ 𝑃 ≤ ( 𝑥 ∨ 𝑞 ) ) ↔ ( ¬ 𝑃 ≤ 𝑥 ∧ 𝑃 ≤ ( 𝑥 ∨ 𝑄 ) ) ) ) |
17 |
|
breq1 |
⊢ ( 𝑞 = 𝑄 → ( 𝑞 ≤ ( 𝑥 ∨ 𝑃 ) ↔ 𝑄 ≤ ( 𝑥 ∨ 𝑃 ) ) ) |
18 |
16 17
|
imbi12d |
⊢ ( 𝑞 = 𝑄 → ( ( ( ¬ 𝑃 ≤ 𝑥 ∧ 𝑃 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑃 ) ) ↔ ( ( ¬ 𝑃 ≤ 𝑥 ∧ 𝑃 ≤ ( 𝑥 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑥 ∨ 𝑃 ) ) ) ) |
19 |
|
breq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑃 ≤ 𝑥 ↔ 𝑃 ≤ 𝑋 ) ) |
20 |
19
|
notbid |
⊢ ( 𝑥 = 𝑋 → ( ¬ 𝑃 ≤ 𝑥 ↔ ¬ 𝑃 ≤ 𝑋 ) ) |
21 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∨ 𝑄 ) = ( 𝑋 ∨ 𝑄 ) ) |
22 |
21
|
breq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑃 ≤ ( 𝑥 ∨ 𝑄 ) ↔ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) |
23 |
20 22
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ¬ 𝑃 ≤ 𝑥 ∧ 𝑃 ≤ ( 𝑥 ∨ 𝑄 ) ) ↔ ( ¬ 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) ) |
24 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑃 ) ) |
25 |
24
|
breq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑄 ≤ ( 𝑥 ∨ 𝑃 ) ↔ 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ) |
26 |
23 25
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( ¬ 𝑃 ≤ 𝑥 ∧ 𝑃 ≤ ( 𝑥 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑥 ∨ 𝑃 ) ) ↔ ( ( ¬ 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) |
27 |
13 18 26
|
rspc3v |
⊢ ( ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑝 ∈ 𝐴 ∀ 𝑞 ∈ 𝐴 ∀ 𝑥 ∈ 𝐵 ( ( ¬ 𝑝 ≤ 𝑥 ∧ 𝑝 ≤ ( 𝑥 ∨ 𝑞 ) ) → 𝑞 ≤ ( 𝑥 ∨ 𝑝 ) ) → ( ( ¬ 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) |
28 |
6 27
|
mpan9 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ¬ 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ) |
29 |
28
|
exp4b |
⊢ ( 𝐾 ∈ CvLat → ( ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ¬ 𝑃 ≤ 𝑋 → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ) ) ) |
30 |
29
|
3imp |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ) |