Step |
Hyp |
Ref |
Expression |
1 |
|
cvlexch.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvlexch.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cvlexch.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cvlexch.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
1 2 3 4
|
cvlexch1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ) |
6 |
|
cvllat |
⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ Lat ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → 𝐾 ∈ Lat ) |
8 |
|
simp22 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → 𝑄 ∈ 𝐴 ) |
9 |
1 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → 𝑄 ∈ 𝐵 ) |
11 |
|
simp23 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → 𝑋 ∈ 𝐵 ) |
12 |
1 3
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑄 ∨ 𝑋 ) = ( 𝑋 ∨ 𝑄 ) ) |
13 |
7 10 11 12
|
syl3anc |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( 𝑄 ∨ 𝑋 ) = ( 𝑋 ∨ 𝑄 ) ) |
14 |
13
|
breq2d |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑋 ) ↔ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) |
15 |
|
simp21 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → 𝑃 ∈ 𝐴 ) |
16 |
1 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
17 |
15 16
|
syl |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → 𝑃 ∈ 𝐵 ) |
18 |
1 3
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑃 ∨ 𝑋 ) = ( 𝑋 ∨ 𝑃 ) ) |
19 |
7 17 11 18
|
syl3anc |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( 𝑃 ∨ 𝑋 ) = ( 𝑋 ∨ 𝑃 ) ) |
20 |
19
|
breq2d |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( 𝑄 ≤ ( 𝑃 ∨ 𝑋 ) ↔ 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ) |
21 |
5 14 20
|
3imtr4d |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑋 ) → 𝑄 ≤ ( 𝑃 ∨ 𝑋 ) ) ) |