Metamath Proof Explorer


Theorem cvlexch3

Description: An atomic covering lattice has the exchange property. ( atexch analog.) (Contributed by NM, 5-Nov-2012)

Ref Expression
Hypotheses cvlexch3.b 𝐵 = ( Base ‘ 𝐾 )
cvlexch3.l = ( le ‘ 𝐾 )
cvlexch3.j = ( join ‘ 𝐾 )
cvlexch3.m = ( meet ‘ 𝐾 )
cvlexch3.z 0 = ( 0. ‘ 𝐾 )
cvlexch3.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion cvlexch3 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ) = 0 ) → ( 𝑃 ( 𝑋 𝑄 ) → 𝑄 ( 𝑋 𝑃 ) ) )

Proof

Step Hyp Ref Expression
1 cvlexch3.b 𝐵 = ( Base ‘ 𝐾 )
2 cvlexch3.l = ( le ‘ 𝐾 )
3 cvlexch3.j = ( join ‘ 𝐾 )
4 cvlexch3.m = ( meet ‘ 𝐾 )
5 cvlexch3.z 0 = ( 0. ‘ 𝐾 )
6 cvlexch3.a 𝐴 = ( Atoms ‘ 𝐾 )
7 cvlatl ( 𝐾 ∈ CvLat → 𝐾 ∈ AtLat )
8 7 adantr ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → 𝐾 ∈ AtLat )
9 simpr1 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → 𝑃𝐴 )
10 simpr3 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → 𝑋𝐵 )
11 1 2 4 5 6 atnle ( ( 𝐾 ∈ AtLat ∧ 𝑃𝐴𝑋𝐵 ) → ( ¬ 𝑃 𝑋 ↔ ( 𝑃 𝑋 ) = 0 ) )
12 8 9 10 11 syl3anc ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → ( ¬ 𝑃 𝑋 ↔ ( 𝑃 𝑋 ) = 0 ) )
13 1 2 3 6 cvlexch1 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ¬ 𝑃 𝑋 ) → ( 𝑃 ( 𝑋 𝑄 ) → 𝑄 ( 𝑋 𝑃 ) ) )
14 13 3expia ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → ( ¬ 𝑃 𝑋 → ( 𝑃 ( 𝑋 𝑄 ) → 𝑄 ( 𝑋 𝑃 ) ) ) )
15 12 14 sylbird ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ) → ( ( 𝑃 𝑋 ) = 0 → ( 𝑃 ( 𝑋 𝑄 ) → 𝑄 ( 𝑋 𝑃 ) ) ) )
16 15 3impia ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑋𝐵 ) ∧ ( 𝑃 𝑋 ) = 0 ) → ( 𝑃 ( 𝑋 𝑄 ) → 𝑄 ( 𝑋 𝑃 ) ) )