Step |
Hyp |
Ref |
Expression |
1 |
|
cvlexch3.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvlexch3.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cvlexch3.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cvlexch3.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cvlexch3.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
6 |
|
cvlexch3.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
7 |
|
cvlatl |
⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ AtLat ) |
8 |
7
|
adantr |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝐾 ∈ AtLat ) |
9 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑃 ∈ 𝐴 ) |
10 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
11 |
1 2 4 5 6
|
atnle |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ¬ 𝑃 ≤ 𝑋 ↔ ( 𝑃 ∧ 𝑋 ) = 0 ) ) |
12 |
8 9 10 11
|
syl3anc |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( ¬ 𝑃 ≤ 𝑋 ↔ ( 𝑃 ∧ 𝑋 ) = 0 ) ) |
13 |
1 2 3 6
|
cvlexchb1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ↔ ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) ) |
14 |
13
|
3expia |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( ¬ 𝑃 ≤ 𝑋 → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ↔ ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) ) ) |
15 |
12 14
|
sylbird |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑃 ∧ 𝑋 ) = 0 → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ↔ ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) ) ) |
16 |
15
|
3impia |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∧ 𝑋 ) = 0 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ↔ ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) ) |