| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvlexch.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
cvlexch.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
cvlexch.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
cvlexch.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cvllat |
⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ Lat ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) |
| 7 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
| 8 |
|
simpr2 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑄 ∈ 𝐴 ) |
| 9 |
1 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑄 ∈ 𝐵 ) |
| 11 |
1 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 12 |
6 7 10 11
|
syl3anc |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 13 |
12
|
3adant3 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 15 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 16 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑃 ∈ 𝐴 ) |
| 17 |
1 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑃 ∈ 𝐵 ) |
| 19 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
| 20 |
6 7 10 19
|
syl3anc |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
| 21 |
1 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ↔ ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ) ) |
| 22 |
6 7 18 20 21
|
syl13anc |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ↔ ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ) ) |
| 23 |
22
|
3adant3 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ↔ ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ↔ ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ) ) |
| 25 |
14 15 24
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 26 |
1 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → 𝑋 ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 27 |
6 7 18 26
|
syl3anc |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑋 ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 28 |
27
|
3adant3 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → 𝑋 ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑋 ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 30 |
1 2 3 4
|
cvlexch1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ) |
| 31 |
30
|
imp |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 32 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) |
| 33 |
6 7 18 32
|
syl3anc |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) |
| 34 |
1 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ) ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑃 ) ∧ 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ↔ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) ) |
| 35 |
6 7 10 33 34
|
syl13anc |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑃 ) ∧ 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ↔ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) ) |
| 36 |
35
|
3adant3 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑃 ) ∧ 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ↔ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) ) |
| 37 |
36
|
adantr |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( ( 𝑋 ≤ ( 𝑋 ∨ 𝑃 ) ∧ 𝑄 ≤ ( 𝑋 ∨ 𝑃 ) ) ↔ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) ) |
| 38 |
29 31 37
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 39 |
1 2
|
latasymb |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∨ 𝑃 ) ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) → ( ( ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ∧ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) ↔ ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) ) |
| 40 |
6 33 20 39
|
syl3anc |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ∧ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) ↔ ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) ) |
| 41 |
40
|
3adant3 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( ( ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ∧ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) ↔ ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( ( ( 𝑋 ∨ 𝑃 ) ≤ ( 𝑋 ∨ 𝑄 ) ∧ ( 𝑋 ∨ 𝑄 ) ≤ ( 𝑋 ∨ 𝑃 ) ) ↔ ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) ) |
| 43 |
25 38 42
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) |
| 44 |
43
|
ex |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) ) |
| 45 |
1 2 3
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → 𝑃 ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 46 |
6 7 18 45
|
syl3anc |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑃 ≤ ( 𝑋 ∨ 𝑃 ) ) |
| 47 |
|
breq2 |
⊢ ( ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑃 ) ↔ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) |
| 48 |
46 47
|
syl5ibcom |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) → 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) |
| 49 |
48
|
3adant3 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) → 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) |
| 50 |
44 49
|
impbid |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 𝑃 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ↔ ( 𝑋 ∨ 𝑃 ) = ( 𝑋 ∨ 𝑄 ) ) ) |