Metamath Proof Explorer


Theorem cvllat

Description: An atomic lattice with the covering property is a lattice. (Contributed by NM, 5-Nov-2012)

Ref Expression
Assertion cvllat ( 𝐾 ∈ CvLat → 𝐾 ∈ Lat )

Proof

Step Hyp Ref Expression
1 cvlatl ( 𝐾 ∈ CvLat → 𝐾 ∈ AtLat )
2 atllat ( 𝐾 ∈ AtLat → 𝐾 ∈ Lat )
3 1 2 syl ( 𝐾 ∈ CvLat → 𝐾 ∈ Lat )