Step |
Hyp |
Ref |
Expression |
1 |
|
cvlsupr2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
cvlsupr2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cvlsupr2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑃 ≠ 𝑄 ) |
5 |
4
|
necomd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑄 ≠ 𝑃 ) |
6 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑃 ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) |
7 |
|
oveq2 |
⊢ ( 𝑅 = 𝑃 → ( 𝑃 ∨ 𝑅 ) = ( 𝑃 ∨ 𝑃 ) ) |
8 |
|
oveq2 |
⊢ ( 𝑅 = 𝑃 → ( 𝑄 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑃 ) ) |
9 |
7 8
|
eqeq12d |
⊢ ( 𝑅 = 𝑃 → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑃 ∨ 𝑃 ) = ( 𝑄 ∨ 𝑃 ) ) ) |
10 |
|
eqcom |
⊢ ( ( 𝑃 ∨ 𝑃 ) = ( 𝑄 ∨ 𝑃 ) ↔ ( 𝑄 ∨ 𝑃 ) = ( 𝑃 ∨ 𝑃 ) ) |
11 |
9 10
|
bitrdi |
⊢ ( 𝑅 = 𝑃 → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑄 ∨ 𝑃 ) = ( 𝑃 ∨ 𝑃 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑃 ) → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑄 ∨ 𝑃 ) = ( 𝑃 ∨ 𝑃 ) ) ) |
13 |
6 12
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑃 ) → ( 𝑄 ∨ 𝑃 ) = ( 𝑃 ∨ 𝑃 ) ) |
14 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝐾 ∈ CvLat ) |
15 |
|
cvllat |
⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ Lat ) |
16 |
14 15
|
syl |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝐾 ∈ Lat ) |
17 |
|
simpl21 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑃 ∈ 𝐴 ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
19 |
18 1
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
20 |
17 19
|
syl |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
21 |
18 3
|
latjidm |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑃 ) = 𝑃 ) |
22 |
16 20 21
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑃 ∨ 𝑃 ) = 𝑃 ) |
23 |
22
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑃 ) → ( 𝑃 ∨ 𝑃 ) = 𝑃 ) |
24 |
13 23
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑃 ) → ( 𝑄 ∨ 𝑃 ) = 𝑃 ) |
25 |
24
|
ex |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑅 = 𝑃 → ( 𝑄 ∨ 𝑃 ) = 𝑃 ) ) |
26 |
|
simpl22 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑄 ∈ 𝐴 ) |
27 |
18 1
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
28 |
26 27
|
syl |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
29 |
18 2 3
|
latleeqj1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ≤ 𝑃 ↔ ( 𝑄 ∨ 𝑃 ) = 𝑃 ) ) |
30 |
16 28 20 29
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑄 ≤ 𝑃 ↔ ( 𝑄 ∨ 𝑃 ) = 𝑃 ) ) |
31 |
|
cvlatl |
⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ AtLat ) |
32 |
14 31
|
syl |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝐾 ∈ AtLat ) |
33 |
2 1
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑄 ≤ 𝑃 ↔ 𝑄 = 𝑃 ) ) |
34 |
32 26 17 33
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑄 ≤ 𝑃 ↔ 𝑄 = 𝑃 ) ) |
35 |
30 34
|
bitr3d |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( ( 𝑄 ∨ 𝑃 ) = 𝑃 ↔ 𝑄 = 𝑃 ) ) |
36 |
25 35
|
sylibd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑅 = 𝑃 → 𝑄 = 𝑃 ) ) |
37 |
36
|
necon3d |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑄 ≠ 𝑃 → 𝑅 ≠ 𝑃 ) ) |
38 |
5 37
|
mpd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑅 ≠ 𝑃 ) |
39 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑄 ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) |
40 |
|
oveq2 |
⊢ ( 𝑅 = 𝑄 → ( 𝑃 ∨ 𝑅 ) = ( 𝑃 ∨ 𝑄 ) ) |
41 |
|
oveq2 |
⊢ ( 𝑅 = 𝑄 → ( 𝑄 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑄 ) ) |
42 |
40 41
|
eqeq12d |
⊢ ( 𝑅 = 𝑄 → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑄 ) ) ) |
43 |
42
|
adantl |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑄 ) → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑄 ) ) ) |
44 |
39 43
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑄 ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑄 ) ) |
45 |
18 3
|
latjidm |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∨ 𝑄 ) = 𝑄 ) |
46 |
16 28 45
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑄 ∨ 𝑄 ) = 𝑄 ) |
47 |
46
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑄 ) → ( 𝑄 ∨ 𝑄 ) = 𝑄 ) |
48 |
44 47
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ 𝑅 = 𝑄 ) → ( 𝑃 ∨ 𝑄 ) = 𝑄 ) |
49 |
48
|
ex |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑅 = 𝑄 → ( 𝑃 ∨ 𝑄 ) = 𝑄 ) ) |
50 |
18 2 3
|
latleeqj1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ≤ 𝑄 ↔ ( 𝑃 ∨ 𝑄 ) = 𝑄 ) ) |
51 |
16 20 28 50
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑃 ≤ 𝑄 ↔ ( 𝑃 ∨ 𝑄 ) = 𝑄 ) ) |
52 |
2 1
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄 ) ) |
53 |
32 17 26 52
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑃 ≤ 𝑄 ↔ 𝑃 = 𝑄 ) ) |
54 |
51 53
|
bitr3d |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( ( 𝑃 ∨ 𝑄 ) = 𝑄 ↔ 𝑃 = 𝑄 ) ) |
55 |
49 54
|
sylibd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑅 = 𝑄 → 𝑃 = 𝑄 ) ) |
56 |
55
|
necon3d |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑃 ≠ 𝑄 → 𝑅 ≠ 𝑄 ) ) |
57 |
4 56
|
mpd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑅 ≠ 𝑄 ) |
58 |
|
simpl23 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑅 ∈ 𝐴 ) |
59 |
18 1
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
60 |
58 59
|
syl |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
61 |
18 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → 𝑄 ≤ ( 𝑄 ∨ 𝑅 ) ) |
62 |
16 28 60 61
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑄 ≤ ( 𝑄 ∨ 𝑅 ) ) |
63 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) |
64 |
62 63
|
breqtrrd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑄 ≤ ( 𝑃 ∨ 𝑅 ) ) |
65 |
2 3 1
|
cvlatexch1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑄 ≠ 𝑃 ) → ( 𝑄 ≤ ( 𝑃 ∨ 𝑅 ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
66 |
14 26 58 17 5 65
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑄 ≤ ( 𝑃 ∨ 𝑅 ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
67 |
64 66
|
mpd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
68 |
38 57 67
|
3jca |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) → ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
69 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
70 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ CvLat ) |
71 |
70 15
|
syl |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ Lat ) |
72 |
|
simpl21 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) |
73 |
72 19
|
syl |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
74 |
|
simpl22 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) |
75 |
74 27
|
syl |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
76 |
18 3
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
77 |
71 73 75 76
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
78 |
77
|
breq2d |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ↔ 𝑅 ≤ ( 𝑄 ∨ 𝑃 ) ) ) |
79 |
|
simpl23 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ∈ 𝐴 ) |
80 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ≠ 𝑄 ) |
81 |
2 3 1
|
cvlatexch1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑅 ≠ 𝑄 ) → ( 𝑅 ≤ ( 𝑄 ∨ 𝑃 ) → 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
82 |
70 79 72 74 80 81
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ≤ ( 𝑄 ∨ 𝑃 ) → 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) ) |
83 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ≠ 𝑃 ) |
84 |
83
|
necomd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≠ 𝑅 ) |
85 |
2 3 1
|
cvlatexchb2 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑅 ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
86 |
70 72 74 79 84 85
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
87 |
82 86
|
sylibd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ≤ ( 𝑄 ∨ 𝑃 ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
88 |
78 87
|
sylbid |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
89 |
69 88
|
mpd |
⊢ ( ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) |
90 |
68 89
|
impbida |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |