| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cvlsupr2.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cvlsupr2.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cvlsupr2.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 5 | 
							
								4
							 | 
							necomd | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  𝑄  ≠  𝑃 )  | 
						
						
							| 6 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ∧  𝑅  =  𝑃 )  →  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑅  =  𝑃  →  ( 𝑃  ∨  𝑅 )  =  ( 𝑃  ∨  𝑃 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑅  =  𝑃  →  ( 𝑄  ∨  𝑅 )  =  ( 𝑄  ∨  𝑃 ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							eqeq12d | 
							⊢ ( 𝑅  =  𝑃  →  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ↔  ( 𝑃  ∨  𝑃 )  =  ( 𝑄  ∨  𝑃 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( 𝑃  ∨  𝑃 )  =  ( 𝑄  ∨  𝑃 )  ↔  ( 𝑄  ∨  𝑃 )  =  ( 𝑃  ∨  𝑃 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							bitrdi | 
							⊢ ( 𝑅  =  𝑃  →  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ↔  ( 𝑄  ∨  𝑃 )  =  ( 𝑃  ∨  𝑃 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantl | 
							⊢ ( ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ∧  𝑅  =  𝑃 )  →  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ↔  ( 𝑄  ∨  𝑃 )  =  ( 𝑃  ∨  𝑃 ) ) )  | 
						
						
							| 13 | 
							
								6 12
							 | 
							mpbid | 
							⊢ ( ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ∧  𝑅  =  𝑃 )  →  ( 𝑄  ∨  𝑃 )  =  ( 𝑃  ∨  𝑃 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  𝐾  ∈  CvLat )  | 
						
						
							| 15 | 
							
								
							 | 
							cvllat | 
							⊢ ( 𝐾  ∈  CvLat  →  𝐾  ∈  Lat )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 17 | 
							
								
							 | 
							simpl21 | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 19 | 
							
								18 1
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 21 | 
							
								18 3
							 | 
							latjidm | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑃  ∨  𝑃 )  =  𝑃 )  | 
						
						
							| 22 | 
							
								16 20 21
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑃  ∨  𝑃 )  =  𝑃 )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ∧  𝑅  =  𝑃 )  →  ( 𝑃  ∨  𝑃 )  =  𝑃 )  | 
						
						
							| 24 | 
							
								13 23
							 | 
							eqtrd | 
							⊢ ( ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ∧  𝑅  =  𝑃 )  →  ( 𝑄  ∨  𝑃 )  =  𝑃 )  | 
						
						
							| 25 | 
							
								24
							 | 
							ex | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑅  =  𝑃  →  ( 𝑄  ∨  𝑃 )  =  𝑃 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simpl22 | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 27 | 
							
								18 1
							 | 
							atbase | 
							⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 29 | 
							
								18 2 3
							 | 
							latleeqj1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑄  ≤  𝑃  ↔  ( 𝑄  ∨  𝑃 )  =  𝑃 ) )  | 
						
						
							| 30 | 
							
								16 28 20 29
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑄  ≤  𝑃  ↔  ( 𝑄  ∨  𝑃 )  =  𝑃 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							cvlatl | 
							⊢ ( 𝐾  ∈  CvLat  →  𝐾  ∈  AtLat )  | 
						
						
							| 32 | 
							
								14 31
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  𝐾  ∈  AtLat )  | 
						
						
							| 33 | 
							
								2 1
							 | 
							atcmp | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑄  ∈  𝐴  ∧  𝑃  ∈  𝐴 )  →  ( 𝑄  ≤  𝑃  ↔  𝑄  =  𝑃 ) )  | 
						
						
							| 34 | 
							
								32 26 17 33
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑄  ≤  𝑃  ↔  𝑄  =  𝑃 ) )  | 
						
						
							| 35 | 
							
								30 34
							 | 
							bitr3d | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  ( ( 𝑄  ∨  𝑃 )  =  𝑃  ↔  𝑄  =  𝑃 ) )  | 
						
						
							| 36 | 
							
								25 35
							 | 
							sylibd | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑅  =  𝑃  →  𝑄  =  𝑃 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							necon3d | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑄  ≠  𝑃  →  𝑅  ≠  𝑃 ) )  | 
						
						
							| 38 | 
							
								5 37
							 | 
							mpd | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  𝑅  ≠  𝑃 )  | 
						
						
							| 39 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ∧  𝑅  =  𝑄 )  →  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 40 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑅  =  𝑄  →  ( 𝑃  ∨  𝑅 )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑅  =  𝑄  →  ( 𝑄  ∨  𝑅 )  =  ( 𝑄  ∨  𝑄 ) )  | 
						
						
							| 42 | 
							
								40 41
							 | 
							eqeq12d | 
							⊢ ( 𝑅  =  𝑄  →  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ↔  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑄 ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							adantl | 
							⊢ ( ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ∧  𝑅  =  𝑄 )  →  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ↔  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑄 ) ) )  | 
						
						
							| 44 | 
							
								39 43
							 | 
							mpbid | 
							⊢ ( ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ∧  𝑅  =  𝑄 )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑄 ) )  | 
						
						
							| 45 | 
							
								18 3
							 | 
							latjidm | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑄  ∨  𝑄 )  =  𝑄 )  | 
						
						
							| 46 | 
							
								16 28 45
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑄  ∨  𝑄 )  =  𝑄 )  | 
						
						
							| 47 | 
							
								46
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ∧  𝑅  =  𝑄 )  →  ( 𝑄  ∨  𝑄 )  =  𝑄 )  | 
						
						
							| 48 | 
							
								44 47
							 | 
							eqtrd | 
							⊢ ( ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  ∧  𝑅  =  𝑄 )  →  ( 𝑃  ∨  𝑄 )  =  𝑄 )  | 
						
						
							| 49 | 
							
								48
							 | 
							ex | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑅  =  𝑄  →  ( 𝑃  ∨  𝑄 )  =  𝑄 ) )  | 
						
						
							| 50 | 
							
								18 2 3
							 | 
							latleeqj1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑃  ≤  𝑄  ↔  ( 𝑃  ∨  𝑄 )  =  𝑄 ) )  | 
						
						
							| 51 | 
							
								16 20 28 50
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑃  ≤  𝑄  ↔  ( 𝑃  ∨  𝑄 )  =  𝑄 ) )  | 
						
						
							| 52 | 
							
								2 1
							 | 
							atcmp | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ≤  𝑄  ↔  𝑃  =  𝑄 ) )  | 
						
						
							| 53 | 
							
								32 17 26 52
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑃  ≤  𝑄  ↔  𝑃  =  𝑄 ) )  | 
						
						
							| 54 | 
							
								51 53
							 | 
							bitr3d | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  ( ( 𝑃  ∨  𝑄 )  =  𝑄  ↔  𝑃  =  𝑄 ) )  | 
						
						
							| 55 | 
							
								49 54
							 | 
							sylibd | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑅  =  𝑄  →  𝑃  =  𝑄 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							necon3d | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑃  ≠  𝑄  →  𝑅  ≠  𝑄 ) )  | 
						
						
							| 57 | 
							
								4 56
							 | 
							mpd | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  𝑅  ≠  𝑄 )  | 
						
						
							| 58 | 
							
								
							 | 
							simpl23 | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 59 | 
							
								18 1
							 | 
							atbase | 
							⊢ ( 𝑅  ∈  𝐴  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 60 | 
							
								58 59
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 61 | 
							
								18 2 3
							 | 
							latlej1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  ( Base ‘ 𝐾 )  ∧  𝑅  ∈  ( Base ‘ 𝐾 ) )  →  𝑄  ≤  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 62 | 
							
								16 28 60 61
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  𝑄  ≤  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 63 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 64 | 
							
								62 63
							 | 
							breqtrrd | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  𝑄  ≤  ( 𝑃  ∨  𝑅 ) )  | 
						
						
							| 65 | 
							
								2 3 1
							 | 
							cvlatexch1 | 
							⊢ ( ( 𝐾  ∈  CvLat  ∧  ( 𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴  ∧  𝑃  ∈  𝐴 )  ∧  𝑄  ≠  𝑃 )  →  ( 𝑄  ≤  ( 𝑃  ∨  𝑅 )  →  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 66 | 
							
								14 26 58 17 5 65
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑄  ≤  ( 𝑃  ∨  𝑅 )  →  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 67 | 
							
								64 66
							 | 
							mpd | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 68 | 
							
								38 57 67
							 | 
							3jca | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 69 | 
							
								
							 | 
							simpr3 | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 70 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  CvLat )  | 
						
						
							| 71 | 
							
								70 15
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 72 | 
							
								
							 | 
							simpl21 | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 73 | 
							
								72 19
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 74 | 
							
								
							 | 
							simpl22 | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 75 | 
							
								74 27
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 76 | 
							
								18 3
							 | 
							latjcom | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) )  | 
						
						
							| 77 | 
							
								71 73 75 76
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							breq2d | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ↔  𝑅  ≤  ( 𝑄  ∨  𝑃 ) ) )  | 
						
						
							| 79 | 
							
								
							 | 
							simpl23 | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 80 | 
							
								
							 | 
							simpr2 | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ≠  𝑄 )  | 
						
						
							| 81 | 
							
								2 3 1
							 | 
							cvlatexch1 | 
							⊢ ( ( 𝐾  ∈  CvLat  ∧  ( 𝑅  ∈  𝐴  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑅  ≠  𝑄 )  →  ( 𝑅  ≤  ( 𝑄  ∨  𝑃 )  →  𝑃  ≤  ( 𝑄  ∨  𝑅 ) ) )  | 
						
						
							| 82 | 
							
								70 79 72 74 80 81
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ≤  ( 𝑄  ∨  𝑃 )  →  𝑃  ≤  ( 𝑄  ∨  𝑅 ) ) )  | 
						
						
							| 83 | 
							
								
							 | 
							simpr1 | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ≠  𝑃 )  | 
						
						
							| 84 | 
							
								83
							 | 
							necomd | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ≠  𝑅 )  | 
						
						
							| 85 | 
							
								2 3 1
							 | 
							cvlatexchb2 | 
							⊢ ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑅 )  →  ( 𝑃  ≤  ( 𝑄  ∨  𝑅 )  ↔  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) ) )  | 
						
						
							| 86 | 
							
								70 72 74 79 84 85
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ≤  ( 𝑄  ∨  𝑅 )  ↔  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) ) )  | 
						
						
							| 87 | 
							
								82 86
							 | 
							sylibd | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ≤  ( 𝑄  ∨  𝑃 )  →  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) ) )  | 
						
						
							| 88 | 
							
								78 87
							 | 
							sylbid | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  →  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) ) )  | 
						
						
							| 89 | 
							
								69 88
							 | 
							mpd | 
							⊢ ( ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  | 
						
						
							| 90 | 
							
								68 89
							 | 
							impbida | 
							⊢ ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ↔  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  |