Step |
Hyp |
Ref |
Expression |
1 |
|
cvlsupr2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
cvlsupr2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cvlsupr2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
df-ne |
⊢ ( 𝑃 ≠ 𝑄 ↔ ¬ 𝑃 = 𝑄 ) |
5 |
4
|
imbi1i |
⊢ ( ( 𝑃 ≠ 𝑄 → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ↔ ( ¬ 𝑃 = 𝑄 → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
6 |
|
oveq1 |
⊢ ( 𝑃 = 𝑄 → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) |
7 |
6
|
biantrur |
⊢ ( ( ¬ 𝑃 = 𝑄 → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ↔ ( ( 𝑃 = 𝑄 → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( ¬ 𝑃 = 𝑄 → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) ) |
8 |
|
pm4.83 |
⊢ ( ( ( 𝑃 = 𝑄 → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ∧ ( ¬ 𝑃 = 𝑄 → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) ↔ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) |
9 |
5 7 8
|
3bitrri |
⊢ ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑃 ≠ 𝑄 → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) |
10 |
1 2 3
|
cvlsupr2 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
11 |
10
|
3expia |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( 𝑃 ≠ 𝑄 → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) ) |
12 |
11
|
pm5.74d |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝑃 ≠ 𝑄 → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ↔ ( 𝑃 ≠ 𝑄 → ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) ) |
13 |
9 12
|
syl5bb |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ↔ ( 𝑃 ≠ 𝑄 → ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) ) |