| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cvlsupr5.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cvlsupr5.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								1 3 2
							 | 
							cvlsupr2 | 
							⊢ ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  ↔  ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅 ( le ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝑅  ≠  𝑃  ∧  𝑅  ≠  𝑄  ∧  𝑅 ( le ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  →  𝑅  ≠  𝑄 )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							biimtrdi | 
							⊢ ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  →  𝑅  ≠  𝑄 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							3exp | 
							⊢ ( 𝐾  ∈  CvLat  →  ( ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ( 𝑃  ≠  𝑄  →  ( ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 )  →  𝑅  ≠  𝑄 ) ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							imp4a | 
							⊢ ( 𝐾  ∈  CvLat  →  ( ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ( ( 𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) )  →  𝑅  ≠  𝑄 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							3imp | 
							⊢ ( ( 𝐾  ∈  CvLat  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑅 )  =  ( 𝑄  ∨  𝑅 ) ) )  →  𝑅  ≠  𝑄 )  |