| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvlsupr5.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 2 |
|
cvlsupr5.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cvllat |
⊢ ( 𝐾 ∈ CvLat → 𝐾 ∈ Lat ) |
| 4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → 𝐾 ∈ Lat ) |
| 5 |
|
simp21 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → 𝑃 ∈ 𝐴 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 7 |
6 1
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 8 |
5 7
|
syl |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 9 |
|
simp23 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → 𝑅 ∈ 𝐴 ) |
| 10 |
6 1
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
| 12 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 13 |
6 12 2
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → 𝑃 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑅 ) ) |
| 14 |
4 8 11 13
|
syl3anc |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → 𝑃 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑅 ) ) |
| 15 |
|
simp3r |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) |
| 16 |
14 15
|
breqtrd |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → 𝑃 ( le ‘ 𝐾 ) ( 𝑄 ∨ 𝑅 ) ) |
| 17 |
|
simp22 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → 𝑄 ∈ 𝐴 ) |
| 18 |
6 1
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 20 |
6 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∨ 𝑅 ) = ( 𝑅 ∨ 𝑄 ) ) |
| 21 |
4 19 11 20
|
syl3anc |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑄 ∨ 𝑅 ) = ( 𝑅 ∨ 𝑄 ) ) |
| 22 |
16 21
|
breqtrd |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → 𝑃 ( le ‘ 𝐾 ) ( 𝑅 ∨ 𝑄 ) ) |
| 23 |
|
simp1 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → 𝐾 ∈ CvLat ) |
| 24 |
|
simp3l |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → 𝑃 ≠ 𝑄 ) |
| 25 |
12 2 1
|
cvlatexchb2 |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑃 ( le ‘ 𝐾 ) ( 𝑅 ∨ 𝑄 ) ↔ ( 𝑃 ∨ 𝑄 ) = ( 𝑅 ∨ 𝑄 ) ) ) |
| 26 |
23 5 9 17 24 25
|
syl131anc |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑃 ( le ‘ 𝐾 ) ( 𝑅 ∨ 𝑄 ) ↔ ( 𝑃 ∨ 𝑄 ) = ( 𝑅 ∨ 𝑄 ) ) ) |
| 27 |
22 26
|
mpbid |
⊢ ( ( 𝐾 ∈ CvLat ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑃 ∨ 𝑅 ) = ( 𝑄 ∨ 𝑅 ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑅 ∨ 𝑄 ) ) |