Metamath Proof Explorer


Theorem cvlsupr7

Description: Consequence of superposition condition ( P .\/ R ) = ( Q .\/ R ) . (Contributed by NM, 24-Nov-2012)

Ref Expression
Hypotheses cvlsupr5.a 𝐴 = ( Atoms ‘ 𝐾 )
cvlsupr5.j = ( join ‘ 𝐾 )
Assertion cvlsupr7 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → ( 𝑃 𝑄 ) = ( 𝑅 𝑄 ) )

Proof

Step Hyp Ref Expression
1 cvlsupr5.a 𝐴 = ( Atoms ‘ 𝐾 )
2 cvlsupr5.j = ( join ‘ 𝐾 )
3 cvllat ( 𝐾 ∈ CvLat → 𝐾 ∈ Lat )
4 3 3ad2ant1 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝐾 ∈ Lat )
5 simp21 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑃𝐴 )
6 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
7 6 1 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
8 5 7 syl ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
9 simp23 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑅𝐴 )
10 6 1 atbase ( 𝑅𝐴𝑅 ∈ ( Base ‘ 𝐾 ) )
11 9 10 syl ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) )
12 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
13 6 12 2 latlej1 ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → 𝑃 ( le ‘ 𝐾 ) ( 𝑃 𝑅 ) )
14 4 8 11 13 syl3anc ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑃 ( le ‘ 𝐾 ) ( 𝑃 𝑅 ) )
15 simp3r ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) )
16 14 15 breqtrd ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑃 ( le ‘ 𝐾 ) ( 𝑄 𝑅 ) )
17 simp22 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑄𝐴 )
18 6 1 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
19 17 18 syl ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
20 6 2 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 𝑅 ) = ( 𝑅 𝑄 ) )
21 4 19 11 20 syl3anc ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → ( 𝑄 𝑅 ) = ( 𝑅 𝑄 ) )
22 16 21 breqtrd ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑃 ( le ‘ 𝐾 ) ( 𝑅 𝑄 ) )
23 simp1 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝐾 ∈ CvLat )
24 simp3l ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑃𝑄 )
25 12 2 1 cvlatexchb2 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑅𝐴𝑄𝐴 ) ∧ 𝑃𝑄 ) → ( 𝑃 ( le ‘ 𝐾 ) ( 𝑅 𝑄 ) ↔ ( 𝑃 𝑄 ) = ( 𝑅 𝑄 ) ) )
26 23 5 9 17 24 25 syl131anc ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → ( 𝑃 ( le ‘ 𝐾 ) ( 𝑅 𝑄 ) ↔ ( 𝑃 𝑄 ) = ( 𝑅 𝑄 ) ) )
27 22 26 mpbid ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → ( 𝑃 𝑄 ) = ( 𝑅 𝑄 ) )