Metamath Proof Explorer


Theorem cvlsupr8

Description: Consequence of superposition condition ( P .\/ R ) = ( Q .\/ R ) . (Contributed by NM, 24-Nov-2012)

Ref Expression
Hypotheses cvlsupr5.a 𝐴 = ( Atoms ‘ 𝐾 )
cvlsupr5.j = ( join ‘ 𝐾 )
Assertion cvlsupr8 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → ( 𝑃 𝑄 ) = ( 𝑃 𝑅 ) )

Proof

Step Hyp Ref Expression
1 cvlsupr5.a 𝐴 = ( Atoms ‘ 𝐾 )
2 cvlsupr5.j = ( join ‘ 𝐾 )
3 cvllat ( 𝐾 ∈ CvLat → 𝐾 ∈ Lat )
4 3 3ad2ant1 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝐾 ∈ Lat )
5 simp22 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑄𝐴 )
6 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
7 6 1 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
8 5 7 syl ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
9 simp23 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑅𝐴 )
10 6 1 atbase ( 𝑅𝐴𝑅 ∈ ( Base ‘ 𝐾 ) )
11 9 10 syl ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) )
12 6 2 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 𝑅 ) = ( 𝑅 𝑄 ) )
13 4 8 11 12 syl3anc ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → ( 𝑄 𝑅 ) = ( 𝑅 𝑄 ) )
14 simp3r ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) )
15 1 2 cvlsupr7 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → ( 𝑃 𝑄 ) = ( 𝑅 𝑄 ) )
16 13 14 15 3eqtr4rd ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑃 𝑅 ) = ( 𝑄 𝑅 ) ) ) → ( 𝑃 𝑄 ) = ( 𝑃 𝑅 ) )