| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cvnbtwn | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ   ∧  𝐶  ∈   Cℋ  )  →  ( 𝐴  ⋖ℋ  𝐵  →  ¬  ( 𝐴  ⊊  𝐶  ∧  𝐶  ⊊  𝐵 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							iman | 
							⊢ ( ( ( 𝐴  ⊆  𝐶  ∧  𝐶  ⊊  𝐵 )  →  𝐴  =  𝐶 )  ↔  ¬  ( ( 𝐴  ⊆  𝐶  ∧  𝐶  ⊊  𝐵 )  ∧  ¬  𝐴  =  𝐶 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝐶  =  𝐴  ↔  𝐴  =  𝐶 )  | 
						
						
							| 4 | 
							
								3
							 | 
							imbi2i | 
							⊢ ( ( ( 𝐴  ⊆  𝐶  ∧  𝐶  ⊊  𝐵 )  →  𝐶  =  𝐴 )  ↔  ( ( 𝐴  ⊆  𝐶  ∧  𝐶  ⊊  𝐵 )  →  𝐴  =  𝐶 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							dfpss2 | 
							⊢ ( 𝐴  ⊊  𝐶  ↔  ( 𝐴  ⊆  𝐶  ∧  ¬  𝐴  =  𝐶 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							anbi1i | 
							⊢ ( ( 𝐴  ⊊  𝐶  ∧  𝐶  ⊊  𝐵 )  ↔  ( ( 𝐴  ⊆  𝐶  ∧  ¬  𝐴  =  𝐶 )  ∧  𝐶  ⊊  𝐵 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							an32 | 
							⊢ ( ( ( 𝐴  ⊆  𝐶  ∧  ¬  𝐴  =  𝐶 )  ∧  𝐶  ⊊  𝐵 )  ↔  ( ( 𝐴  ⊆  𝐶  ∧  𝐶  ⊊  𝐵 )  ∧  ¬  𝐴  =  𝐶 ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							bitri | 
							⊢ ( ( 𝐴  ⊊  𝐶  ∧  𝐶  ⊊  𝐵 )  ↔  ( ( 𝐴  ⊆  𝐶  ∧  𝐶  ⊊  𝐵 )  ∧  ¬  𝐴  =  𝐶 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							notbii | 
							⊢ ( ¬  ( 𝐴  ⊊  𝐶  ∧  𝐶  ⊊  𝐵 )  ↔  ¬  ( ( 𝐴  ⊆  𝐶  ∧  𝐶  ⊊  𝐵 )  ∧  ¬  𝐴  =  𝐶 ) )  | 
						
						
							| 10 | 
							
								2 4 9
							 | 
							3bitr4ri | 
							⊢ ( ¬  ( 𝐴  ⊊  𝐶  ∧  𝐶  ⊊  𝐵 )  ↔  ( ( 𝐴  ⊆  𝐶  ∧  𝐶  ⊊  𝐵 )  →  𝐶  =  𝐴 ) )  | 
						
						
							| 11 | 
							
								1 10
							 | 
							imbitrdi | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ   ∧  𝐶  ∈   Cℋ  )  →  ( 𝐴  ⋖ℋ  𝐵  →  ( ( 𝐴  ⊆  𝐶  ∧  𝐶  ⊊  𝐵 )  →  𝐶  =  𝐴 ) ) )  |