Metamath Proof Explorer


Theorem cvnbtwn4

Description: The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of MaedaMaeda p. 31. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion cvnbtwn4 ( ( 𝐴C𝐵C𝐶C ) → ( 𝐴 𝐵 → ( ( 𝐴𝐶𝐶𝐵 ) → ( 𝐶 = 𝐴𝐶 = 𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 cvnbtwn ( ( 𝐴C𝐵C𝐶C ) → ( 𝐴 𝐵 → ¬ ( 𝐴𝐶𝐶𝐵 ) ) )
2 iman ( ( ( 𝐴𝐶𝐶𝐵 ) → ( 𝐶 = 𝐴𝐶 = 𝐵 ) ) ↔ ¬ ( ( 𝐴𝐶𝐶𝐵 ) ∧ ¬ ( 𝐶 = 𝐴𝐶 = 𝐵 ) ) )
3 an4 ( ( ( 𝐴𝐶𝐶𝐵 ) ∧ ( ¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵 ) ) ↔ ( ( 𝐴𝐶 ∧ ¬ 𝐴 = 𝐶 ) ∧ ( 𝐶𝐵 ∧ ¬ 𝐶 = 𝐵 ) ) )
4 ioran ( ¬ ( 𝐶 = 𝐴𝐶 = 𝐵 ) ↔ ( ¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵 ) )
5 eqcom ( 𝐶 = 𝐴𝐴 = 𝐶 )
6 5 notbii ( ¬ 𝐶 = 𝐴 ↔ ¬ 𝐴 = 𝐶 )
7 6 anbi1i ( ( ¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵 ) ↔ ( ¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵 ) )
8 4 7 bitri ( ¬ ( 𝐶 = 𝐴𝐶 = 𝐵 ) ↔ ( ¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵 ) )
9 8 anbi2i ( ( ( 𝐴𝐶𝐶𝐵 ) ∧ ¬ ( 𝐶 = 𝐴𝐶 = 𝐵 ) ) ↔ ( ( 𝐴𝐶𝐶𝐵 ) ∧ ( ¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵 ) ) )
10 dfpss2 ( 𝐴𝐶 ↔ ( 𝐴𝐶 ∧ ¬ 𝐴 = 𝐶 ) )
11 dfpss2 ( 𝐶𝐵 ↔ ( 𝐶𝐵 ∧ ¬ 𝐶 = 𝐵 ) )
12 10 11 anbi12i ( ( 𝐴𝐶𝐶𝐵 ) ↔ ( ( 𝐴𝐶 ∧ ¬ 𝐴 = 𝐶 ) ∧ ( 𝐶𝐵 ∧ ¬ 𝐶 = 𝐵 ) ) )
13 3 9 12 3bitr4i ( ( ( 𝐴𝐶𝐶𝐵 ) ∧ ¬ ( 𝐶 = 𝐴𝐶 = 𝐵 ) ) ↔ ( 𝐴𝐶𝐶𝐵 ) )
14 13 notbii ( ¬ ( ( 𝐴𝐶𝐶𝐵 ) ∧ ¬ ( 𝐶 = 𝐴𝐶 = 𝐵 ) ) ↔ ¬ ( 𝐴𝐶𝐶𝐵 ) )
15 2 14 bitr2i ( ¬ ( 𝐴𝐶𝐶𝐵 ) ↔ ( ( 𝐴𝐶𝐶𝐵 ) → ( 𝐶 = 𝐴𝐶 = 𝐵 ) ) )
16 1 15 syl6ib ( ( 𝐴C𝐵C𝐶C ) → ( 𝐴 𝐵 → ( ( 𝐴𝐶𝐶𝐵 ) → ( 𝐶 = 𝐴𝐶 = 𝐵 ) ) ) )