| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvnbtwn |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 → ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) ) |
| 2 |
|
iman |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) → ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ↔ ¬ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ) |
| 3 |
|
an4 |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ( ¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵 ) ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵 ) ) ) |
| 4 |
|
ioran |
⊢ ( ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ↔ ( ¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵 ) ) |
| 5 |
|
eqcom |
⊢ ( 𝐶 = 𝐴 ↔ 𝐴 = 𝐶 ) |
| 6 |
5
|
notbii |
⊢ ( ¬ 𝐶 = 𝐴 ↔ ¬ 𝐴 = 𝐶 ) |
| 7 |
6
|
anbi1i |
⊢ ( ( ¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵 ) ↔ ( ¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵 ) ) |
| 8 |
4 7
|
bitri |
⊢ ( ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ↔ ( ¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵 ) ) |
| 9 |
8
|
anbi2i |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ( ¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵 ) ) ) |
| 10 |
|
dfpss2 |
⊢ ( 𝐴 ⊊ 𝐶 ↔ ( 𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶 ) ) |
| 11 |
|
dfpss2 |
⊢ ( 𝐶 ⊊ 𝐵 ↔ ( 𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵 ) ) |
| 12 |
10 11
|
anbi12i |
⊢ ( ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶 ) ∧ ( 𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵 ) ) ) |
| 13 |
3 9 12
|
3bitr4i |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ↔ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) |
| 14 |
13
|
notbii |
⊢ ( ¬ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ∧ ¬ ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ↔ ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ) |
| 15 |
2 14
|
bitr2i |
⊢ ( ¬ ( 𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵 ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) → ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ) |
| 16 |
1 15
|
imbitrdi |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( 𝐴 ⋖ℋ 𝐵 → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) → ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) ) ) |