Metamath Proof Explorer


Theorem cvr1

Description: A Hilbert lattice has the covering property. Proposition 1(ii) in Kalmbach p. 140 (and its converse). ( chcv1 analog.) (Contributed by NM, 17-Nov-2011)

Ref Expression
Hypotheses cvr1.b 𝐵 = ( Base ‘ 𝐾 )
cvr1.l = ( le ‘ 𝐾 )
cvr1.j = ( join ‘ 𝐾 )
cvr1.c 𝐶 = ( ⋖ ‘ 𝐾 )
cvr1.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion cvr1 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) → ( ¬ 𝑃 𝑋𝑋 𝐶 ( 𝑋 𝑃 ) ) )

Proof

Step Hyp Ref Expression
1 cvr1.b 𝐵 = ( Base ‘ 𝐾 )
2 cvr1.l = ( le ‘ 𝐾 )
3 cvr1.j = ( join ‘ 𝐾 )
4 cvr1.c 𝐶 = ( ⋖ ‘ 𝐾 )
5 cvr1.a 𝐴 = ( Atoms ‘ 𝐾 )
6 hlomcmcv ( 𝐾 ∈ HL → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) )
7 1 2 3 4 5 cvlcvr1 ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋𝐵𝑃𝐴 ) → ( ¬ 𝑃 𝑋𝑋 𝐶 ( 𝑋 𝑃 ) ) )
8 6 7 syl3an1 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴 ) → ( ¬ 𝑃 𝑋𝑋 𝐶 ( 𝑋 𝑃 ) ) )