Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Hilbert lattices
cvr1
Metamath Proof Explorer
Description: A Hilbert lattice has the covering property. Proposition 1(ii) in
Kalmbach p. 140 (and its converse). ( chcv1 analog.) (Contributed by NM , 17-Nov-2011)
Ref
Expression
Hypotheses
cvr1.b
⊢ 𝐵 = ( Base ‘ 𝐾 )
cvr1.l
⊢ ≤ = ( le ‘ 𝐾 )
cvr1.j
⊢ ∨ = ( join ‘ 𝐾 )
cvr1.c
⊢ 𝐶 = ( ⋖ ‘ 𝐾 )
cvr1.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
Assertion
cvr1
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑋 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) )
Proof
Step
Hyp
Ref
Expression
1
cvr1.b
⊢ 𝐵 = ( Base ‘ 𝐾 )
2
cvr1.l
⊢ ≤ = ( le ‘ 𝐾 )
3
cvr1.j
⊢ ∨ = ( join ‘ 𝐾 )
4
cvr1.c
⊢ 𝐶 = ( ⋖ ‘ 𝐾 )
5
cvr1.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
6
hlomcmcv
⊢ ( 𝐾 ∈ HL → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) )
7
1 2 3 4 5
cvlcvr1
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑋 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) )
8
6 7
syl3an1
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ≤ 𝑋 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) )