Step |
Hyp |
Ref |
Expression |
1 |
|
cvr2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvr2.s |
⊢ < = ( lt ‘ 𝐾 ) |
3 |
|
cvr2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cvr2.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
5 |
|
cvr2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
8 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
9 |
1 5
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
10 |
9
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ∈ 𝐵 ) |
11 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
12 |
1 11 2 3
|
latnle |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑋 ↔ 𝑋 < ( 𝑋 ∨ 𝑃 ) ) ) |
13 |
7 8 10 12
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑋 ↔ 𝑋 < ( 𝑋 ∨ 𝑃 ) ) ) |
14 |
1 11 3 4 5
|
cvr1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑋 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) ) |
15 |
13 14
|
bitr3d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑋 < ( 𝑋 ∨ 𝑃 ) ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) ) |