Step |
Hyp |
Ref |
Expression |
1 |
|
cvrat.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvrat.s |
⊢ < = ( lt ‘ 𝐾 ) |
3 |
|
cvrat.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cvrat.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
5 |
|
cvrat.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
1 2 3 4 5
|
cvratlem |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( 𝑋 ≠ 0 ∧ 𝑋 < ( 𝑃 ∨ 𝑄 ) ) ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑋 → 𝑋 ∈ 𝐴 ) ) |
7 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
8 |
7
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
9 |
|
simpr2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) |
10 |
1 5
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
11 |
9 10
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐵 ) |
12 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) |
13 |
1 5
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐵 ) |
15 |
1 3
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
16 |
8 11 14 15
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
17 |
16
|
breq2d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 < ( 𝑃 ∨ 𝑄 ) ↔ 𝑋 < ( 𝑄 ∨ 𝑃 ) ) ) |
18 |
17
|
anbi2d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≠ 0 ∧ 𝑋 < ( 𝑃 ∨ 𝑄 ) ) ↔ ( 𝑋 ≠ 0 ∧ 𝑋 < ( 𝑄 ∨ 𝑃 ) ) ) ) |
19 |
|
simpl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) |
20 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑋 ∈ 𝐵 ) |
21 |
1 2 3 4 5
|
cvratlem |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ) ∧ ( 𝑋 ≠ 0 ∧ 𝑋 < ( 𝑄 ∨ 𝑃 ) ) ) → ( ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋 → 𝑋 ∈ 𝐴 ) ) |
22 |
21
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) ) → ( ( 𝑋 ≠ 0 ∧ 𝑋 < ( 𝑄 ∨ 𝑃 ) ) → ( ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋 → 𝑋 ∈ 𝐴 ) ) ) |
23 |
19 20 12 9 22
|
syl13anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≠ 0 ∧ 𝑋 < ( 𝑄 ∨ 𝑃 ) ) → ( ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋 → 𝑋 ∈ 𝐴 ) ) ) |
24 |
18 23
|
sylbid |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≠ 0 ∧ 𝑋 < ( 𝑃 ∨ 𝑄 ) ) → ( ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋 → 𝑋 ∈ 𝐴 ) ) ) |
25 |
24
|
imp |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( 𝑋 ≠ 0 ∧ 𝑋 < ( 𝑃 ∨ 𝑄 ) ) ) → ( ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋 → 𝑋 ∈ 𝐴 ) ) |
26 |
|
hlpos |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Poset ) |
27 |
26
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ Poset ) |
28 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
29 |
8 11 14 28
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
30 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
31 |
1 30 2
|
pltnle |
⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) ∧ 𝑋 < ( 𝑃 ∨ 𝑄 ) ) → ¬ ( 𝑃 ∨ 𝑄 ) ( le ‘ 𝐾 ) 𝑋 ) |
32 |
31
|
ex |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑋 < ( 𝑃 ∨ 𝑄 ) → ¬ ( 𝑃 ∨ 𝑄 ) ( le ‘ 𝐾 ) 𝑋 ) ) |
33 |
27 20 29 32
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 < ( 𝑃 ∨ 𝑄 ) → ¬ ( 𝑃 ∨ 𝑄 ) ( le ‘ 𝐾 ) 𝑋 ) ) |
34 |
1 30 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑃 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑋 ) ↔ ( 𝑃 ∨ 𝑄 ) ( le ‘ 𝐾 ) 𝑋 ) ) |
35 |
8 11 14 20 34
|
syl13anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑃 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑋 ) ↔ ( 𝑃 ∨ 𝑄 ) ( le ‘ 𝐾 ) 𝑋 ) ) |
36 |
35
|
biimpd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑃 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑋 ) → ( 𝑃 ∨ 𝑄 ) ( le ‘ 𝐾 ) 𝑋 ) ) |
37 |
33 36
|
nsyld |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 < ( 𝑃 ∨ 𝑄 ) → ¬ ( 𝑃 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑋 ) ) ) |
38 |
|
ianor |
⊢ ( ¬ ( 𝑃 ( le ‘ 𝐾 ) 𝑋 ∧ 𝑄 ( le ‘ 𝐾 ) 𝑋 ) ↔ ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑋 ∨ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋 ) ) |
39 |
37 38
|
syl6ib |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 < ( 𝑃 ∨ 𝑄 ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑋 ∨ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋 ) ) ) |
40 |
39
|
imp |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑋 < ( 𝑃 ∨ 𝑄 ) ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑋 ∨ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋 ) ) |
41 |
40
|
adantrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( 𝑋 ≠ 0 ∧ 𝑋 < ( 𝑃 ∨ 𝑄 ) ) ) → ( ¬ 𝑃 ( le ‘ 𝐾 ) 𝑋 ∨ ¬ 𝑄 ( le ‘ 𝐾 ) 𝑋 ) ) |
42 |
6 25 41
|
mpjaod |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( 𝑋 ≠ 0 ∧ 𝑋 < ( 𝑃 ∨ 𝑄 ) ) ) → 𝑋 ∈ 𝐴 ) |
43 |
42
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≠ 0 ∧ 𝑋 < ( 𝑃 ∨ 𝑄 ) ) → 𝑋 ∈ 𝐴 ) ) |