| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvrat.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | cvrat.s | ⊢  <   =  ( lt ‘ 𝐾 ) | 
						
							| 3 |  | cvrat.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 |  | cvrat.z | ⊢  0   =  ( 0. ‘ 𝐾 ) | 
						
							| 5 |  | cvrat.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 6 | 1 2 3 4 5 | cvratlem | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( 𝑋  ≠   0   ∧  𝑋  <  ( 𝑃  ∨  𝑄 ) ) )  →  ( ¬  𝑃 ( le ‘ 𝐾 ) 𝑋  →  𝑋  ∈  𝐴 ) ) | 
						
							| 7 |  | hllat | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝐾  ∈  Lat ) | 
						
							| 9 |  | simpr2 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 10 | 1 5 | atbase | ⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  𝐵 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑃  ∈  𝐵 ) | 
						
							| 12 |  | simpr3 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 13 | 1 5 | atbase | ⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  𝐵 ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑄  ∈  𝐵 ) | 
						
							| 15 | 1 3 | latjcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  𝐵  ∧  𝑄  ∈  𝐵 )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 16 | 8 11 14 15 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 17 | 16 | breq2d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑋  <  ( 𝑃  ∨  𝑄 )  ↔  𝑋  <  ( 𝑄  ∨  𝑃 ) ) ) | 
						
							| 18 | 17 | anbi2d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑋  ≠   0   ∧  𝑋  <  ( 𝑃  ∨  𝑄 ) )  ↔  ( 𝑋  ≠   0   ∧  𝑋  <  ( 𝑄  ∨  𝑃 ) ) ) ) | 
						
							| 19 |  | simpl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝐾  ∈  HL ) | 
						
							| 20 |  | simpr1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 21 | 1 2 3 4 5 | cvratlem | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑃  ∈  𝐴 ) )  ∧  ( 𝑋  ≠   0   ∧  𝑋  <  ( 𝑄  ∨  𝑃 ) ) )  →  ( ¬  𝑄 ( le ‘ 𝐾 ) 𝑋  →  𝑋  ∈  𝐴 ) ) | 
						
							| 22 | 21 | ex | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴  ∧  𝑃  ∈  𝐴 ) )  →  ( ( 𝑋  ≠   0   ∧  𝑋  <  ( 𝑄  ∨  𝑃 ) )  →  ( ¬  𝑄 ( le ‘ 𝐾 ) 𝑋  →  𝑋  ∈  𝐴 ) ) ) | 
						
							| 23 | 19 20 12 9 22 | syl13anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑋  ≠   0   ∧  𝑋  <  ( 𝑄  ∨  𝑃 ) )  →  ( ¬  𝑄 ( le ‘ 𝐾 ) 𝑋  →  𝑋  ∈  𝐴 ) ) ) | 
						
							| 24 | 18 23 | sylbid | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑋  ≠   0   ∧  𝑋  <  ( 𝑃  ∨  𝑄 ) )  →  ( ¬  𝑄 ( le ‘ 𝐾 ) 𝑋  →  𝑋  ∈  𝐴 ) ) ) | 
						
							| 25 | 24 | imp | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( 𝑋  ≠   0   ∧  𝑋  <  ( 𝑃  ∨  𝑄 ) ) )  →  ( ¬  𝑄 ( le ‘ 𝐾 ) 𝑋  →  𝑋  ∈  𝐴 ) ) | 
						
							| 26 |  | hlpos | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Poset ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝐾  ∈  Poset ) | 
						
							| 28 | 1 3 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  𝐵  ∧  𝑄  ∈  𝐵 )  →  ( 𝑃  ∨  𝑄 )  ∈  𝐵 ) | 
						
							| 29 | 8 11 14 28 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑃  ∨  𝑄 )  ∈  𝐵 ) | 
						
							| 30 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 31 | 1 30 2 | pltnle | ⊢ ( ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  ( 𝑃  ∨  𝑄 )  ∈  𝐵 )  ∧  𝑋  <  ( 𝑃  ∨  𝑄 ) )  →  ¬  ( 𝑃  ∨  𝑄 ) ( le ‘ 𝐾 ) 𝑋 ) | 
						
							| 32 | 31 | ex | ⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  ( 𝑃  ∨  𝑄 )  ∈  𝐵 )  →  ( 𝑋  <  ( 𝑃  ∨  𝑄 )  →  ¬  ( 𝑃  ∨  𝑄 ) ( le ‘ 𝐾 ) 𝑋 ) ) | 
						
							| 33 | 27 20 29 32 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑋  <  ( 𝑃  ∨  𝑄 )  →  ¬  ( 𝑃  ∨  𝑄 ) ( le ‘ 𝐾 ) 𝑋 ) ) | 
						
							| 34 | 1 30 3 | latjle12 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∈  𝐵  ∧  𝑄  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) )  →  ( ( 𝑃 ( le ‘ 𝐾 ) 𝑋  ∧  𝑄 ( le ‘ 𝐾 ) 𝑋 )  ↔  ( 𝑃  ∨  𝑄 ) ( le ‘ 𝐾 ) 𝑋 ) ) | 
						
							| 35 | 8 11 14 20 34 | syl13anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑃 ( le ‘ 𝐾 ) 𝑋  ∧  𝑄 ( le ‘ 𝐾 ) 𝑋 )  ↔  ( 𝑃  ∨  𝑄 ) ( le ‘ 𝐾 ) 𝑋 ) ) | 
						
							| 36 | 35 | biimpd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑃 ( le ‘ 𝐾 ) 𝑋  ∧  𝑄 ( le ‘ 𝐾 ) 𝑋 )  →  ( 𝑃  ∨  𝑄 ) ( le ‘ 𝐾 ) 𝑋 ) ) | 
						
							| 37 | 33 36 | nsyld | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑋  <  ( 𝑃  ∨  𝑄 )  →  ¬  ( 𝑃 ( le ‘ 𝐾 ) 𝑋  ∧  𝑄 ( le ‘ 𝐾 ) 𝑋 ) ) ) | 
						
							| 38 |  | ianor | ⊢ ( ¬  ( 𝑃 ( le ‘ 𝐾 ) 𝑋  ∧  𝑄 ( le ‘ 𝐾 ) 𝑋 )  ↔  ( ¬  𝑃 ( le ‘ 𝐾 ) 𝑋  ∨  ¬  𝑄 ( le ‘ 𝐾 ) 𝑋 ) ) | 
						
							| 39 | 37 38 | imbitrdi | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑋  <  ( 𝑃  ∨  𝑄 )  →  ( ¬  𝑃 ( le ‘ 𝐾 ) 𝑋  ∨  ¬  𝑄 ( le ‘ 𝐾 ) 𝑋 ) ) ) | 
						
							| 40 | 39 | imp | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑋  <  ( 𝑃  ∨  𝑄 ) )  →  ( ¬  𝑃 ( le ‘ 𝐾 ) 𝑋  ∨  ¬  𝑄 ( le ‘ 𝐾 ) 𝑋 ) ) | 
						
							| 41 | 40 | adantrl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( 𝑋  ≠   0   ∧  𝑋  <  ( 𝑃  ∨  𝑄 ) ) )  →  ( ¬  𝑃 ( le ‘ 𝐾 ) 𝑋  ∨  ¬  𝑄 ( le ‘ 𝐾 ) 𝑋 ) ) | 
						
							| 42 | 6 25 41 | mpjaod | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( 𝑋  ≠   0   ∧  𝑋  <  ( 𝑃  ∨  𝑄 ) ) )  →  𝑋  ∈  𝐴 ) | 
						
							| 43 | 42 | ex | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑋  ≠   0   ∧  𝑋  <  ( 𝑃  ∨  𝑄 ) )  →  𝑋  ∈  𝐴 ) ) |