| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvrat2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
cvrat2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cvrat2.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
| 4 |
|
cvrat2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
| 6 |
1 2 5 3 4
|
atcvrj0 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) ) → ( 𝑋 = ( 0. ‘ 𝐾 ) ↔ 𝑃 = 𝑄 ) ) |
| 7 |
6
|
3expa |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) ) → ( 𝑋 = ( 0. ‘ 𝐾 ) ↔ 𝑃 = 𝑄 ) ) |
| 8 |
7
|
necon3bid |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) ) → ( 𝑋 ≠ ( 0. ‘ 𝐾 ) ↔ 𝑃 ≠ 𝑄 ) ) |
| 9 |
|
simpl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) |
| 10 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑋 ∈ 𝐵 ) |
| 11 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
| 13 |
|
simpr2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) |
| 14 |
1 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐵 ) |
| 16 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) |
| 17 |
1 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐵 ) |
| 19 |
1 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 20 |
12 15 18 19
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 21 |
|
eqid |
⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) |
| 22 |
1 21 3
|
cvrlt |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) ∧ 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) ) → 𝑋 ( lt ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) |
| 23 |
22
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) → 𝑋 ( lt ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) |
| 24 |
9 10 20 23
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) → 𝑋 ( lt ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) |
| 25 |
1 21 2 5 4
|
cvrat |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≠ ( 0. ‘ 𝐾 ) ∧ 𝑋 ( lt ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) → 𝑋 ∈ 𝐴 ) ) |
| 26 |
25
|
expcomd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ( lt ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) → ( 𝑋 ≠ ( 0. ‘ 𝐾 ) → 𝑋 ∈ 𝐴 ) ) ) |
| 27 |
24 26
|
syld |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) → ( 𝑋 ≠ ( 0. ‘ 𝐾 ) → 𝑋 ∈ 𝐴 ) ) ) |
| 28 |
27
|
imp |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) ) → ( 𝑋 ≠ ( 0. ‘ 𝐾 ) → 𝑋 ∈ 𝐴 ) ) |
| 29 |
8 28
|
sylbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) ) → ( 𝑃 ≠ 𝑄 → 𝑋 ∈ 𝐴 ) ) |
| 30 |
29
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) → ( 𝑃 ≠ 𝑄 → 𝑋 ∈ 𝐴 ) ) ) |
| 31 |
30
|
com23 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ≠ 𝑄 → ( 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) → 𝑋 ∈ 𝐴 ) ) ) |
| 32 |
31
|
impd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑃 ≠ 𝑄 ∧ 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) ) → 𝑋 ∈ 𝐴 ) ) |
| 33 |
32
|
3impia |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑋 𝐶 ( 𝑃 ∨ 𝑄 ) ) ) → 𝑋 ∈ 𝐴 ) |