| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvrat3.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | cvrat3.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | cvrat3.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 |  | cvrat3.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 5 |  | cvrat3.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 6 |  | eqid | ⊢ (  ⋖  ‘ 𝐾 )  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 7 | 1 2 3 6 5 | cvr1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐴 )  →  ( ¬  𝑄  ≤  𝑋  ↔  𝑋 (  ⋖  ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) ) ) | 
						
							| 8 | 7 | 3adant3r2 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ¬  𝑄  ≤  𝑋  ↔  𝑋 (  ⋖  ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) ) ) | 
						
							| 9 | 8 | biimpa | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ¬  𝑄  ≤  𝑋 )  →  𝑋 (  ⋖  ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) ) | 
						
							| 10 | 9 | adantrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( ¬  𝑄  ≤  𝑋  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) ) )  →  𝑋 (  ⋖  ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) ) | 
						
							| 11 |  | hllat | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝐾  ∈  Lat ) | 
						
							| 13 |  | simpr2 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 14 | 1 5 | atbase | ⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  𝐵 ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑃  ∈  𝐵 ) | 
						
							| 16 |  | simpr3 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 17 | 1 5 | atbase | ⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  𝐵 ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑄  ∈  𝐵 ) | 
						
							| 19 | 1 3 | latjcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  𝐵  ∧  𝑄  ∈  𝐵 )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 20 | 12 15 18 19 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) )  =  ( 𝑋  ∨  ( 𝑄  ∨  𝑃 ) ) ) | 
						
							| 22 |  | simpr1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 23 | 1 3 | latjass | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐵  ∧  𝑃  ∈  𝐵 ) )  →  ( ( 𝑋  ∨  𝑄 )  ∨  𝑃 )  =  ( 𝑋  ∨  ( 𝑄  ∨  𝑃 ) ) ) | 
						
							| 24 | 12 22 18 15 23 | syl13anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑋  ∨  𝑄 )  ∨  𝑃 )  =  ( 𝑋  ∨  ( 𝑄  ∨  𝑃 ) ) ) | 
						
							| 25 | 21 24 | eqtr4d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) )  =  ( ( 𝑋  ∨  𝑄 )  ∨  𝑃 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) )  =  ( ( 𝑋  ∨  𝑄 )  ∨  𝑃 ) ) | 
						
							| 27 | 1 3 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐵 )  →  ( 𝑋  ∨  𝑄 )  ∈  𝐵 ) | 
						
							| 28 | 12 22 18 27 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑋  ∨  𝑄 )  ∈  𝐵 ) | 
						
							| 29 | 1 2 3 | latjlej2 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∈  𝐵  ∧  ( 𝑋  ∨  𝑄 )  ∈  𝐵  ∧  ( 𝑋  ∨  𝑄 )  ∈  𝐵 ) )  →  ( 𝑃  ≤  ( 𝑋  ∨  𝑄 )  →  ( ( 𝑋  ∨  𝑄 )  ∨  𝑃 )  ≤  ( ( 𝑋  ∨  𝑄 )  ∨  ( 𝑋  ∨  𝑄 ) ) ) ) | 
						
							| 30 | 12 15 28 28 29 | syl13anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑃  ≤  ( 𝑋  ∨  𝑄 )  →  ( ( 𝑋  ∨  𝑄 )  ∨  𝑃 )  ≤  ( ( 𝑋  ∨  𝑄 )  ∨  ( 𝑋  ∨  𝑄 ) ) ) ) | 
						
							| 31 | 30 | imp | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( ( 𝑋  ∨  𝑄 )  ∨  𝑃 )  ≤  ( ( 𝑋  ∨  𝑄 )  ∨  ( 𝑋  ∨  𝑄 ) ) ) | 
						
							| 32 | 26 31 | eqbrtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) )  ≤  ( ( 𝑋  ∨  𝑄 )  ∨  ( 𝑋  ∨  𝑄 ) ) ) | 
						
							| 33 | 1 3 | latjidm | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∨  𝑄 )  ∈  𝐵 )  →  ( ( 𝑋  ∨  𝑄 )  ∨  ( 𝑋  ∨  𝑄 ) )  =  ( 𝑋  ∨  𝑄 ) ) | 
						
							| 34 | 12 28 33 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑋  ∨  𝑄 )  ∨  ( 𝑋  ∨  𝑄 ) )  =  ( 𝑋  ∨  𝑄 ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( ( 𝑋  ∨  𝑄 )  ∨  ( 𝑋  ∨  𝑄 ) )  =  ( 𝑋  ∨  𝑄 ) ) | 
						
							| 36 | 32 35 | breqtrd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) )  ≤  ( 𝑋  ∨  𝑄 ) ) | 
						
							| 37 |  | simpl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝐾  ∈  HL ) | 
						
							| 38 | 2 3 5 | hlatlej2 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝑄  ≤  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 39 | 37 13 16 38 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑄  ≤  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 40 | 1 3 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  𝐵  ∧  𝑄  ∈  𝐵 )  →  ( 𝑃  ∨  𝑄 )  ∈  𝐵 ) | 
						
							| 41 | 12 15 18 40 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑃  ∨  𝑄 )  ∈  𝐵 ) | 
						
							| 42 | 1 2 3 | latjlej2 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∈  𝐵  ∧  ( 𝑃  ∨  𝑄 )  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) )  →  ( 𝑄  ≤  ( 𝑃  ∨  𝑄 )  →  ( 𝑋  ∨  𝑄 )  ≤  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) ) ) ) | 
						
							| 43 | 12 18 41 22 42 | syl13anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑄  ≤  ( 𝑃  ∨  𝑄 )  →  ( 𝑋  ∨  𝑄 )  ≤  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) ) ) ) | 
						
							| 44 | 39 43 | mpd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑋  ∨  𝑄 )  ≤  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( 𝑋  ∨  𝑄 )  ≤  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 46 | 1 3 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  ( 𝑃  ∨  𝑄 )  ∈  𝐵 )  →  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) )  ∈  𝐵 ) | 
						
							| 47 | 12 22 41 46 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) )  ∈  𝐵 ) | 
						
							| 48 | 1 2 | latasymb | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) )  ∈  𝐵  ∧  ( 𝑋  ∨  𝑄 )  ∈  𝐵 )  →  ( ( ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) )  ≤  ( 𝑋  ∨  𝑄 )  ∧  ( 𝑋  ∨  𝑄 )  ≤  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) ) )  ↔  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) )  =  ( 𝑋  ∨  𝑄 ) ) ) | 
						
							| 49 | 12 47 28 48 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) )  ≤  ( 𝑋  ∨  𝑄 )  ∧  ( 𝑋  ∨  𝑄 )  ≤  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) ) )  ↔  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) )  =  ( 𝑋  ∨  𝑄 ) ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( ( ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) )  ≤  ( 𝑋  ∨  𝑄 )  ∧  ( 𝑋  ∨  𝑄 )  ≤  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) ) )  ↔  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) )  =  ( 𝑋  ∨  𝑄 ) ) ) | 
						
							| 51 | 36 45 50 | mpbi2and | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) )  =  ( 𝑋  ∨  𝑄 ) ) | 
						
							| 52 | 51 | breq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( 𝑋 (  ⋖  ‘ 𝐾 ) ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) )  ↔  𝑋 (  ⋖  ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) ) ) | 
						
							| 53 | 52 | adantrl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( ¬  𝑄  ≤  𝑋  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) ) )  →  ( 𝑋 (  ⋖  ‘ 𝐾 ) ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) )  ↔  𝑋 (  ⋖  ‘ 𝐾 ) ( 𝑋  ∨  𝑄 ) ) ) | 
						
							| 54 | 10 53 | mpbird | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( ¬  𝑄  ≤  𝑋  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) ) )  →  𝑋 (  ⋖  ‘ 𝐾 ) ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 55 | 54 | ex | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( ¬  𝑄  ≤  𝑋  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  𝑋 (  ⋖  ‘ 𝐾 ) ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) ) ) ) | 
						
							| 56 | 1 3 4 6 | cvrexch | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  ( 𝑃  ∨  𝑄 )  ∈  𝐵 )  →  ( ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) ) (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 )  ↔  𝑋 (  ⋖  ‘ 𝐾 ) ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) ) ) ) | 
						
							| 57 | 37 22 41 56 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) ) (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 )  ↔  𝑋 (  ⋖  ‘ 𝐾 ) ( 𝑋  ∨  ( 𝑃  ∨  𝑄 ) ) ) ) | 
						
							| 58 | 55 57 | sylibrd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( ¬  𝑄  ≤  𝑋  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) ) (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  ≠  𝑄 )  →  ( ( ¬  𝑄  ≤  𝑋  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) ) (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 60 | 1 4 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  ( 𝑃  ∨  𝑄 )  ∈  𝐵 )  →  ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) )  ∈  𝐵 ) | 
						
							| 61 | 12 22 41 60 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) )  ∈  𝐵 ) | 
						
							| 62 | 1 3 6 5 | cvrat2 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) )  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) ) (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) )  ∈  𝐴 ) | 
						
							| 63 | 62 | 3expia | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) )  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑃  ≠  𝑄  ∧  ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) ) (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  →  ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) )  ∈  𝐴 ) ) | 
						
							| 64 | 37 61 13 16 63 | syl13anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑃  ≠  𝑄  ∧  ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) ) (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  →  ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) )  ∈  𝐴 ) ) | 
						
							| 65 | 64 | expdimp | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  ≠  𝑄 )  →  ( ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) ) (  ⋖  ‘ 𝐾 ) ( 𝑃  ∨  𝑄 )  →  ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) )  ∈  𝐴 ) ) | 
						
							| 66 | 59 65 | syld | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  ≠  𝑄 )  →  ( ( ¬  𝑄  ≤  𝑋  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) )  ∈  𝐴 ) ) | 
						
							| 67 | 66 | exp4b | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑃  ≠  𝑄  →  ( ¬  𝑄  ≤  𝑋  →  ( 𝑃  ≤  ( 𝑋  ∨  𝑄 )  →  ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) )  ∈  𝐴 ) ) ) ) | 
						
							| 68 | 67 | 3impd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( 𝑋  ∧  ( 𝑃  ∨  𝑄 ) )  ∈  𝐴 ) ) |