| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvrat4.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | cvrat4.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | cvrat4.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 |  | cvrat4.z | ⊢  0   =  ( 0. ‘ 𝐾 ) | 
						
							| 5 |  | cvrat4.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 6 |  | hlatl | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  AtLat ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝐾  ∈  AtLat ) | 
						
							| 8 |  | simpr1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 9 | 1 2 4 5 | atlex | ⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑋  ∈  𝐵  ∧  𝑋  ≠   0  )  →  ∃ 𝑟  ∈  𝐴 𝑟  ≤  𝑋 ) | 
						
							| 10 | 9 | 3exp | ⊢ ( 𝐾  ∈  AtLat  →  ( 𝑋  ∈  𝐵  →  ( 𝑋  ≠   0   →  ∃ 𝑟  ∈  𝐴 𝑟  ≤  𝑋 ) ) ) | 
						
							| 11 | 7 8 10 | sylc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑋  ≠   0   →  ∃ 𝑟  ∈  𝐴 𝑟  ≤  𝑋 ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  =  𝑄 )  →  ( 𝑋  ≠   0   →  ∃ 𝑟  ∈  𝐴 𝑟  ≤  𝑋 ) ) | 
						
							| 13 |  | simpll | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑟  ∈  𝐴 )  →  𝐾  ∈  HL ) | 
						
							| 14 |  | simplr3 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑟  ∈  𝐴 )  →  𝑄  ∈  𝐴 ) | 
						
							| 15 |  | simpr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑟  ∈  𝐴 )  →  𝑟  ∈  𝐴 ) | 
						
							| 16 | 2 3 5 | hlatlej1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑟  ∈  𝐴 )  →  𝑄  ≤  ( 𝑄  ∨  𝑟 ) ) | 
						
							| 17 | 13 14 15 16 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑟  ∈  𝐴 )  →  𝑄  ≤  ( 𝑄  ∨  𝑟 ) ) | 
						
							| 18 |  | breq1 | ⊢ ( 𝑃  =  𝑄  →  ( 𝑃  ≤  ( 𝑄  ∨  𝑟 )  ↔  𝑄  ≤  ( 𝑄  ∨  𝑟 ) ) ) | 
						
							| 19 | 17 18 | imbitrrid | ⊢ ( 𝑃  =  𝑄  →  ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑟  ∈  𝐴 )  →  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) | 
						
							| 20 | 19 | expd | ⊢ ( 𝑃  =  𝑄  →  ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑟  ∈  𝐴  →  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) ) | 
						
							| 21 | 20 | impcom | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  =  𝑄 )  →  ( 𝑟  ∈  𝐴  →  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) | 
						
							| 22 | 21 | anim2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  =  𝑄 )  →  ( ( 𝑟  ≤  𝑋  ∧  𝑟  ∈  𝐴 )  →  ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) ) | 
						
							| 23 | 22 | expcomd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  =  𝑄 )  →  ( 𝑟  ∈  𝐴  →  ( 𝑟  ≤  𝑋  →  ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) ) ) | 
						
							| 24 | 23 | reximdvai | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  =  𝑄 )  →  ( ∃ 𝑟  ∈  𝐴 𝑟  ≤  𝑋  →  ∃ 𝑟  ∈  𝐴 ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) ) | 
						
							| 25 | 12 24 | syld | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑃  =  𝑄 )  →  ( 𝑋  ≠   0   →  ∃ 𝑟  ∈  𝐴 ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) ) | 
						
							| 26 | 25 | ex | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑃  =  𝑄  →  ( 𝑋  ≠   0   →  ∃ 𝑟  ∈  𝐴 ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) ) ) | 
						
							| 27 | 26 | a1i | ⊢ ( 𝑃  ≤  ( 𝑋  ∨  𝑄 )  →  ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑃  =  𝑄  →  ( 𝑋  ≠   0   →  ∃ 𝑟  ∈  𝐴 ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) ) ) ) | 
						
							| 28 | 27 | com4l | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑃  =  𝑄  →  ( 𝑋  ≠   0   →  ( 𝑃  ≤  ( 𝑋  ∨  𝑄 )  →  ∃ 𝑟  ∈  𝐴 ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) ) ) ) | 
						
							| 29 | 28 | imp4a | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑃  =  𝑄  →  ( ( 𝑋  ≠   0   ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ∃ 𝑟  ∈  𝐴 ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) ) ) | 
						
							| 30 |  | hllat | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝐾  ∈  Lat ) | 
						
							| 32 |  | simpr3 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 33 | 1 5 | atbase | ⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  𝐵 ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑄  ∈  𝐵 ) | 
						
							| 35 | 1 2 3 | latleeqj2 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( 𝑄  ≤  𝑋  ↔  ( 𝑋  ∨  𝑄 )  =  𝑋 ) ) | 
						
							| 36 | 31 34 8 35 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑄  ≤  𝑋  ↔  ( 𝑋  ∨  𝑄 )  =  𝑋 ) ) | 
						
							| 37 | 36 | biimpa | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑄  ≤  𝑋 )  →  ( 𝑋  ∨  𝑄 )  =  𝑋 ) | 
						
							| 38 | 37 | breq2d | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑄  ≤  𝑋 )  →  ( 𝑃  ≤  ( 𝑋  ∨  𝑄 )  ↔  𝑃  ≤  𝑋 ) ) | 
						
							| 39 | 38 | biimpa | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  𝑃  ≤  𝑋 ) | 
						
							| 40 | 39 | expl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑄  ≤  𝑋  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  𝑃  ≤  𝑋 ) ) | 
						
							| 41 |  | simpl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝐾  ∈  HL ) | 
						
							| 42 |  | simpr2 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 43 | 2 3 5 | hlatlej2 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑃  ∈  𝐴 )  →  𝑃  ≤  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 44 | 41 32 42 43 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑃  ≤  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 45 | 40 44 | jctird | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑄  ≤  𝑋  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( 𝑃  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑃 ) ) ) ) | 
						
							| 46 | 45 42 | jctild | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑄  ≤  𝑋  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( 𝑃  ∈  𝐴  ∧  ( 𝑃  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑃 ) ) ) ) ) | 
						
							| 47 | 46 | impl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( 𝑃  ∈  𝐴  ∧  ( 𝑃  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑃 ) ) ) ) | 
						
							| 48 |  | breq1 | ⊢ ( 𝑟  =  𝑃  →  ( 𝑟  ≤  𝑋  ↔  𝑃  ≤  𝑋 ) ) | 
						
							| 49 |  | oveq2 | ⊢ ( 𝑟  =  𝑃  →  ( 𝑄  ∨  𝑟 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 50 | 49 | breq2d | ⊢ ( 𝑟  =  𝑃  →  ( 𝑃  ≤  ( 𝑄  ∨  𝑟 )  ↔  𝑃  ≤  ( 𝑄  ∨  𝑃 ) ) ) | 
						
							| 51 | 48 50 | anbi12d | ⊢ ( 𝑟  =  𝑃  →  ( ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) )  ↔  ( 𝑃  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑃 ) ) ) ) | 
						
							| 52 | 51 | rspcev | ⊢ ( ( 𝑃  ∈  𝐴  ∧  ( 𝑃  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑃 ) ) )  →  ∃ 𝑟  ∈  𝐴 ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) | 
						
							| 53 | 47 52 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ∃ 𝑟  ∈  𝐴 ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) | 
						
							| 54 | 53 | adantrl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  𝑄  ≤  𝑋 )  ∧  ( 𝑋  ≠   0   ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) ) )  →  ∃ 𝑟  ∈  𝐴 ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) | 
						
							| 55 | 54 | exp31 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑄  ≤  𝑋  →  ( ( 𝑋  ≠   0   ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ∃ 𝑟  ∈  𝐴 ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) ) ) | 
						
							| 56 |  | simpr | ⊢ ( ( 𝑋  ≠   0   ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  𝑃  ≤  ( 𝑋  ∨  𝑄 ) ) | 
						
							| 57 |  | ioran | ⊢ ( ¬  ( 𝑃  =  𝑄  ∨  𝑄  ≤  𝑋 )  ↔  ( ¬  𝑃  =  𝑄  ∧  ¬  𝑄  ≤  𝑋 ) ) | 
						
							| 58 |  | df-ne | ⊢ ( 𝑃  ≠  𝑄  ↔  ¬  𝑃  =  𝑄 ) | 
						
							| 59 | 58 | anbi1i | ⊢ ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 )  ↔  ( ¬  𝑃  =  𝑄  ∧  ¬  𝑄  ≤  𝑋 ) ) | 
						
							| 60 | 57 59 | bitr4i | ⊢ ( ¬  ( 𝑃  =  𝑄  ∨  𝑄  ≤  𝑋 )  ↔  ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 ) ) | 
						
							| 61 |  | eqid | ⊢ ( meet ‘ 𝐾 )  =  ( meet ‘ 𝐾 ) | 
						
							| 62 | 1 2 3 61 5 | cvrat3 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴 ) ) | 
						
							| 63 | 62 | 3expd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑃  ≠  𝑄  →  ( ¬  𝑄  ≤  𝑋  →  ( 𝑃  ≤  ( 𝑋  ∨  𝑄 )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴 ) ) ) ) | 
						
							| 64 | 63 | imp4c | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴 ) ) | 
						
							| 65 | 1 5 | atbase | ⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  𝐵 ) | 
						
							| 66 | 42 65 | syl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑃  ∈  𝐵 ) | 
						
							| 67 | 1 3 | latjcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  𝐵  ∧  𝑄  ∈  𝐵 )  →  ( 𝑃  ∨  𝑄 )  ∈  𝐵 ) | 
						
							| 68 | 31 66 34 67 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑃  ∨  𝑄 )  ∈  𝐵 ) | 
						
							| 69 | 1 2 61 | latmle1 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  ( 𝑃  ∨  𝑄 )  ∈  𝐵 )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ≤  𝑋 ) | 
						
							| 70 | 31 8 68 69 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ≤  𝑋 ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ≤  𝑋 ) | 
						
							| 72 |  | simpll | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) ) )  →  𝐾  ∈  HL ) | 
						
							| 73 | 63 | imp44 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴 ) | 
						
							| 74 |  | simplr2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 75 | 34 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) ) )  →  𝑄  ∈  𝐵 ) | 
						
							| 76 | 73 74 75 | 3jca | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) ) )  →  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 ) ) | 
						
							| 77 | 72 76 | jca | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) ) )  →  ( 𝐾  ∈  HL  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 ) ) ) | 
						
							| 78 | 1 2 61 4 5 | atnle | ⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑄  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  →  ( ¬  𝑄  ≤  𝑋  ↔  ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 )  =   0  ) ) | 
						
							| 79 | 7 32 8 78 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ¬  𝑄  ≤  𝑋  ↔  ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 )  =   0  ) ) | 
						
							| 80 | 1 61 | latmcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 )  =  ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) ) | 
						
							| 81 | 31 34 8 80 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 )  =  ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) ) | 
						
							| 82 | 81 | eqeq1d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 )  =   0   ↔  ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 )  =   0  ) ) | 
						
							| 83 | 79 82 | bitrd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ¬  𝑄  ≤  𝑋  ↔  ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 )  =   0  ) ) | 
						
							| 84 | 1 61 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  ( 𝑃  ∨  𝑄 )  ∈  𝐵 )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐵 ) | 
						
							| 85 | 31 8 68 84 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐵 ) | 
						
							| 86 | 85 8 34 | 3jca | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐵  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐵 ) ) | 
						
							| 87 | 31 86 | jca | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝐾  ∈  Lat  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐵  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐵 ) ) ) | 
						
							| 88 | 1 2 61 | latmlem2 | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐵  ∧  𝑋  ∈  𝐵  ∧  𝑄  ∈  𝐵 ) )  →  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ≤  𝑋  →  ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  ≤  ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 ) ) ) | 
						
							| 89 | 87 70 88 | sylc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  ≤  ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 ) ) | 
						
							| 90 | 89 81 | breqtrd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  ≤  ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) ) | 
						
							| 91 |  | breq2 | ⊢ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 )  =   0   →  ( ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  ≤  ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 )  ↔  ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  ≤   0  ) ) | 
						
							| 92 | 90 91 | syl5ibcom | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 )  =   0   →  ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  ≤   0  ) ) | 
						
							| 93 |  | hlop | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝐾  ∈  OP ) | 
						
							| 95 | 1 61 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  𝐵  ∧  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐵 )  →  ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  ∈  𝐵 ) | 
						
							| 96 | 31 34 85 95 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  ∈  𝐵 ) | 
						
							| 97 | 1 2 4 | ople0 | ⊢ ( ( 𝐾  ∈  OP  ∧  ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  ∈  𝐵 )  →  ( ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  ≤   0   ↔  ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  =   0  ) ) | 
						
							| 98 | 94 96 97 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  ≤   0   ↔  ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  =   0  ) ) | 
						
							| 99 | 92 98 | sylibd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 )  =   0   →  ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  =   0  ) ) | 
						
							| 100 | 83 99 | sylbid | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ¬  𝑄  ≤  𝑋  →  ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  =   0  ) ) | 
						
							| 101 | 100 | imp | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ¬  𝑄  ≤  𝑋 )  →  ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  =   0  ) | 
						
							| 102 | 101 | adantrl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 ) )  →  ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  =   0  ) | 
						
							| 103 | 102 | adantrr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) ) )  →  ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  =   0  ) | 
						
							| 104 | 1 2 61 | latmle2 | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  ( 𝑃  ∨  𝑄 )  ∈  𝐵 )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ≤  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 105 | 31 8 68 104 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ≤  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 106 | 1 3 | latjcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  𝐵  ∧  𝑄  ∈  𝐵 )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 107 | 31 66 34 106 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 108 | 105 107 | breqtrd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ≤  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ≤  ( 𝑄  ∨  𝑃 ) ) | 
						
							| 110 | 30 | adantr | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 ) )  →  𝐾  ∈  Lat ) | 
						
							| 111 |  | simpr3 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 ) )  →  𝑄  ∈  𝐵 ) | 
						
							| 112 |  | simpr1 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴 ) | 
						
							| 113 | 1 5 | atbase | ⊢ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴  →  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐵 ) | 
						
							| 114 | 112 113 | syl | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 ) )  →  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐵 ) | 
						
							| 115 | 1 61 | latmcom | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  𝐵  ∧  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐵 )  →  ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  =  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ( meet ‘ 𝐾 ) 𝑄 ) ) | 
						
							| 116 | 110 111 114 115 | syl3anc | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 ) )  →  ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  =  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ( meet ‘ 𝐾 ) 𝑄 ) ) | 
						
							| 117 | 116 | eqeq1d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 ) )  →  ( ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  =   0   ↔  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ( meet ‘ 𝐾 ) 𝑄 )  =   0  ) ) | 
						
							| 118 | 1 2 3 61 4 5 | hlexch3 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 )  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ( meet ‘ 𝐾 ) 𝑄 )  =   0  )  →  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ≤  ( 𝑄  ∨  𝑃 )  →  𝑃  ≤  ( 𝑄  ∨  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) ) ) | 
						
							| 119 | 118 | 3expia | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 ) )  →  ( ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ( meet ‘ 𝐾 ) 𝑄 )  =   0   →  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ≤  ( 𝑄  ∨  𝑃 )  →  𝑃  ≤  ( 𝑄  ∨  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) ) ) ) | 
						
							| 120 | 117 119 | sylbid | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐵 ) )  →  ( ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) )  =   0   →  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ≤  ( 𝑄  ∨  𝑃 )  →  𝑃  ≤  ( 𝑄  ∨  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) ) ) ) | 
						
							| 121 | 77 103 109 120 | syl3c | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) ) )  →  𝑃  ≤  ( 𝑄  ∨  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) ) | 
						
							| 122 | 71 121 | jca | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) ) )  →  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) ) ) | 
						
							| 123 | 122 | ex | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) ) ) ) | 
						
							| 124 | 64 123 | jcad | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) ) ) ) ) | 
						
							| 125 |  | breq1 | ⊢ ( 𝑟  =  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  →  ( 𝑟  ≤  𝑋  ↔  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ≤  𝑋 ) ) | 
						
							| 126 |  | oveq2 | ⊢ ( 𝑟  =  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  →  ( 𝑄  ∨  𝑟 )  =  ( 𝑄  ∨  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) ) | 
						
							| 127 | 126 | breq2d | ⊢ ( 𝑟  =  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ≤  ( 𝑄  ∨  𝑟 )  ↔  𝑃  ≤  ( 𝑄  ∨  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) ) ) | 
						
							| 128 | 125 127 | anbi12d | ⊢ ( 𝑟  =  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) )  ↔  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) ) ) ) | 
						
							| 129 | 128 | rspcev | ⊢ ( ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ∈  𝐴  ∧  ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) )  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃  ∨  𝑄 ) ) ) ) )  →  ∃ 𝑟  ∈  𝐴 ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) | 
						
							| 130 | 124 129 | syl6 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 )  ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ∃ 𝑟  ∈  𝐴 ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) ) | 
						
							| 131 | 130 | expd | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑄  ≤  𝑋 )  →  ( 𝑃  ≤  ( 𝑋  ∨  𝑄 )  →  ∃ 𝑟  ∈  𝐴 ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) ) ) | 
						
							| 132 | 60 131 | biimtrid | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ¬  ( 𝑃  =  𝑄  ∨  𝑄  ≤  𝑋 )  →  ( 𝑃  ≤  ( 𝑋  ∨  𝑄 )  →  ∃ 𝑟  ∈  𝐴 ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) ) ) | 
						
							| 133 | 56 132 | syl7 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ¬  ( 𝑃  =  𝑄  ∨  𝑄  ≤  𝑋 )  →  ( ( 𝑋  ≠   0   ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ∃ 𝑟  ∈  𝐴 ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) ) ) | 
						
							| 134 | 29 55 133 | ecase3d | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐵  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑋  ≠   0   ∧  𝑃  ≤  ( 𝑋  ∨  𝑄 ) )  →  ∃ 𝑟  ∈  𝐴 ( 𝑟  ≤  𝑋  ∧  𝑃  ≤  ( 𝑄  ∨  𝑟 ) ) ) ) |