Step |
Hyp |
Ref |
Expression |
1 |
|
cvrat4.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvrat4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cvrat4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cvrat4.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
5 |
|
cvrat4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
7 |
6
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ AtLat ) |
8 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑋 ∈ 𝐵 ) |
9 |
1 2 4 5
|
atlex |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) → ∃ 𝑟 ∈ 𝐴 𝑟 ≤ 𝑋 ) |
10 |
9
|
3exp |
⊢ ( 𝐾 ∈ AtLat → ( 𝑋 ∈ 𝐵 → ( 𝑋 ≠ 0 → ∃ 𝑟 ∈ 𝐴 𝑟 ≤ 𝑋 ) ) ) |
11 |
7 8 10
|
sylc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ≠ 0 → ∃ 𝑟 ∈ 𝐴 𝑟 ≤ 𝑋 ) ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑋 ≠ 0 → ∃ 𝑟 ∈ 𝐴 𝑟 ≤ 𝑋 ) ) |
13 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
14 |
|
simplr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝑄 ∈ 𝐴 ) |
15 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝑟 ∈ 𝐴 ) |
16 |
2 3 5
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑄 ∨ 𝑟 ) ) |
17 |
13 14 15 16
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑄 ∨ 𝑟 ) ) |
18 |
|
breq1 |
⊢ ( 𝑃 = 𝑄 → ( 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ↔ 𝑄 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
19 |
17 18
|
syl5ibr |
⊢ ( 𝑃 = 𝑄 → ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
20 |
19
|
expd |
⊢ ( 𝑃 = 𝑄 → ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑟 ∈ 𝐴 → 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) |
21 |
20
|
impcom |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑟 ∈ 𝐴 → 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
22 |
21
|
anim2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 = 𝑄 ) → ( ( 𝑟 ≤ 𝑋 ∧ 𝑟 ∈ 𝐴 ) → ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) |
23 |
22
|
expcomd |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑟 ∈ 𝐴 → ( 𝑟 ≤ 𝑋 → ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) |
24 |
23
|
reximdvai |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 = 𝑄 ) → ( ∃ 𝑟 ∈ 𝐴 𝑟 ≤ 𝑋 → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) |
25 |
12 24
|
syld |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑋 ≠ 0 → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) |
26 |
25
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 = 𝑄 → ( 𝑋 ≠ 0 → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) |
27 |
26
|
a1i |
⊢ ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 = 𝑄 → ( 𝑋 ≠ 0 → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) ) |
28 |
27
|
com4l |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 = 𝑄 → ( 𝑋 ≠ 0 → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) ) |
29 |
28
|
imp4a |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 = 𝑄 → ( ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) |
30 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
31 |
30
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
32 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) |
33 |
1 5
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
34 |
32 33
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐵 ) |
35 |
1 2 3
|
latleeqj2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑄 ≤ 𝑋 ↔ ( 𝑋 ∨ 𝑄 ) = 𝑋 ) ) |
36 |
31 34 8 35
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑄 ≤ 𝑋 ↔ ( 𝑋 ∨ 𝑄 ) = 𝑋 ) ) |
37 |
36
|
biimpa |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑄 ≤ 𝑋 ) → ( 𝑋 ∨ 𝑄 ) = 𝑋 ) |
38 |
37
|
breq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑄 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ↔ 𝑃 ≤ 𝑋 ) ) |
39 |
38
|
biimpa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑃 ≤ 𝑋 ) |
40 |
39
|
expl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑃 ≤ 𝑋 ) ) |
41 |
|
simpl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) |
42 |
|
simpr2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) |
43 |
2 3 5
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → 𝑃 ≤ ( 𝑄 ∨ 𝑃 ) ) |
44 |
41 32 42 43
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ≤ ( 𝑄 ∨ 𝑃 ) ) |
45 |
40 44
|
jctird |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑃 ) ) ) ) |
46 |
45 42
|
jctild |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑃 ∈ 𝐴 ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑃 ) ) ) ) ) |
47 |
46
|
impl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑃 ∈ 𝐴 ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑃 ) ) ) ) |
48 |
|
breq1 |
⊢ ( 𝑟 = 𝑃 → ( 𝑟 ≤ 𝑋 ↔ 𝑃 ≤ 𝑋 ) ) |
49 |
|
oveq2 |
⊢ ( 𝑟 = 𝑃 → ( 𝑄 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑃 ) ) |
50 |
49
|
breq2d |
⊢ ( 𝑟 = 𝑃 → ( 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ↔ 𝑃 ≤ ( 𝑄 ∨ 𝑃 ) ) ) |
51 |
48 50
|
anbi12d |
⊢ ( 𝑟 = 𝑃 → ( ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ↔ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑃 ) ) ) ) |
52 |
51
|
rspcev |
⊢ ( ( 𝑃 ∈ 𝐴 ∧ ( 𝑃 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑃 ) ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
53 |
47 52
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
54 |
53
|
adantrl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑄 ≤ 𝑋 ) ∧ ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
55 |
54
|
exp31 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑄 ≤ 𝑋 → ( ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) |
56 |
|
simpr |
⊢ ( ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) |
57 |
|
ioran |
⊢ ( ¬ ( 𝑃 = 𝑄 ∨ 𝑄 ≤ 𝑋 ) ↔ ( ¬ 𝑃 = 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ) |
58 |
|
df-ne |
⊢ ( 𝑃 ≠ 𝑄 ↔ ¬ 𝑃 = 𝑄 ) |
59 |
58
|
anbi1i |
⊢ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ↔ ( ¬ 𝑃 = 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ) |
60 |
57 59
|
bitr4i |
⊢ ( ¬ ( 𝑃 = 𝑄 ∨ 𝑄 ≤ 𝑋 ) ↔ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ) |
61 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
62 |
1 2 3 61 5
|
cvrat3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) ) |
63 |
62
|
3expd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ≠ 𝑄 → ( ¬ 𝑄 ≤ 𝑋 → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) ) ) ) |
64 |
63
|
imp4c |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) ) |
65 |
1 5
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
66 |
42 65
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐵 ) |
67 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
68 |
31 66 34 67
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
69 |
1 2 61
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ) |
70 |
31 8 68 69
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ) |
71 |
70
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ) |
72 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → 𝐾 ∈ HL ) |
73 |
63
|
imp44 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) |
74 |
|
simplr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) |
75 |
34
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → 𝑄 ∈ 𝐵 ) |
76 |
73 74 75
|
3jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) |
77 |
72 76
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) ) |
78 |
1 2 61 4 5
|
atnle |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ¬ 𝑄 ≤ 𝑋 ↔ ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 ) = 0 ) ) |
79 |
7 32 8 78
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ¬ 𝑄 ≤ 𝑋 ↔ ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 ) = 0 ) ) |
80 |
1 61
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 ) = ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) ) |
81 |
31 34 8 80
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 ) = ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) ) |
82 |
81
|
eqeq1d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 ) = 0 ↔ ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) = 0 ) ) |
83 |
79 82
|
bitrd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ¬ 𝑄 ≤ 𝑋 ↔ ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) = 0 ) ) |
84 |
1 61
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
85 |
31 8 68 84
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
86 |
85 8 34
|
3jca |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) ) |
87 |
31 86
|
jca |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝐾 ∈ Lat ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) ) ) |
88 |
1 2 61
|
latmlem2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ≤ ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 ) ) ) |
89 |
87 70 88
|
sylc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ≤ ( 𝑄 ( meet ‘ 𝐾 ) 𝑋 ) ) |
90 |
89 81
|
breqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ≤ ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) ) |
91 |
|
breq2 |
⊢ ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) = 0 → ( ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ≤ ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) ↔ ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ≤ 0 ) ) |
92 |
90 91
|
syl5ibcom |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) = 0 → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ≤ 0 ) ) |
93 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
94 |
93
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ OP ) |
95 |
1 61
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ∈ 𝐵 ) |
96 |
31 34 85 95
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ∈ 𝐵 ) |
97 |
1 2 4
|
ople0 |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ∈ 𝐵 ) → ( ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ≤ 0 ↔ ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 ) ) |
98 |
94 96 97
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ≤ 0 ↔ ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 ) ) |
99 |
92 98
|
sylibd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) 𝑄 ) = 0 → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 ) ) |
100 |
83 99
|
sylbid |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ¬ 𝑄 ≤ 𝑋 → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 ) ) |
101 |
100
|
imp |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ¬ 𝑄 ≤ 𝑋 ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 ) |
102 |
101
|
adantrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 ) |
103 |
102
|
adantrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 ) |
104 |
1 2 61
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
105 |
31 8 68 104
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
106 |
1 3
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
107 |
31 66 34 106
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
108 |
105 107
|
breqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑄 ∨ 𝑃 ) ) |
109 |
108
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑄 ∨ 𝑃 ) ) |
110 |
30
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) |
111 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) → 𝑄 ∈ 𝐵 ) |
112 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) |
113 |
1 5
|
atbase |
⊢ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
114 |
112 113
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
115 |
1 61
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ( meet ‘ 𝐾 ) 𝑄 ) ) |
116 |
110 111 114 115
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) → ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ( meet ‘ 𝐾 ) 𝑄 ) ) |
117 |
116
|
eqeq1d |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) → ( ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 ↔ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ( meet ‘ 𝐾 ) 𝑄 ) = 0 ) ) |
118 |
1 2 3 61 4 5
|
hlexch3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ( meet ‘ 𝐾 ) 𝑄 ) = 0 ) → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑄 ∨ 𝑃 ) → 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) |
119 |
118
|
3expia |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) → ( ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ( meet ‘ 𝐾 ) 𝑄 ) = 0 → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑄 ∨ 𝑃 ) → 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) ) |
120 |
117 119
|
sylbid |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐵 ) ) → ( ( 𝑄 ( meet ‘ 𝐾 ) ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) = 0 → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ ( 𝑄 ∨ 𝑃 ) → 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) ) |
121 |
77 103 109 120
|
syl3c |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) |
122 |
71 121
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) |
123 |
122
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) ) |
124 |
64 123
|
jcad |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) ) ) |
125 |
|
breq1 |
⊢ ( 𝑟 = ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) → ( 𝑟 ≤ 𝑋 ↔ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ) ) |
126 |
|
oveq2 |
⊢ ( 𝑟 = ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) → ( 𝑄 ∨ 𝑟 ) = ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) |
127 |
126
|
breq2d |
⊢ ( 𝑟 = ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ↔ 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) |
128 |
125 127
|
anbi12d |
⊢ ( 𝑟 = ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) → ( ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ↔ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) ) |
129 |
128
|
rspcev |
⊢ ( ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ∧ ( ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ ( 𝑋 ( meet ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) ) ) ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) |
130 |
124 129
|
syl6 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) |
131 |
130
|
expd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) |
132 |
60 131
|
syl5bi |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ¬ ( 𝑃 = 𝑄 ∨ 𝑄 ≤ 𝑋 ) → ( 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) |
133 |
56 132
|
syl7 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ¬ ( 𝑃 = 𝑄 ∨ 𝑄 ≤ 𝑋 ) → ( ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) ) |
134 |
29 55 133
|
ecase3d |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) |