Metamath Proof Explorer


Theorem cvrat42

Description: Commuted version of cvrat4 . (Contributed by NM, 28-Jan-2012)

Ref Expression
Hypotheses cvrat4.b 𝐵 = ( Base ‘ 𝐾 )
cvrat4.l = ( le ‘ 𝐾 )
cvrat4.j = ( join ‘ 𝐾 )
cvrat4.z 0 = ( 0. ‘ 𝐾 )
cvrat4.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion cvrat42 ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( ( 𝑋0𝑃 ( 𝑋 𝑄 ) ) → ∃ 𝑟𝐴 ( 𝑟 𝑋𝑃 ( 𝑟 𝑄 ) ) ) )

Proof

Step Hyp Ref Expression
1 cvrat4.b 𝐵 = ( Base ‘ 𝐾 )
2 cvrat4.l = ( le ‘ 𝐾 )
3 cvrat4.j = ( join ‘ 𝐾 )
4 cvrat4.z 0 = ( 0. ‘ 𝐾 )
5 cvrat4.a 𝐴 = ( Atoms ‘ 𝐾 )
6 1 2 3 4 5 cvrat4 ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( ( 𝑋0𝑃 ( 𝑋 𝑄 ) ) → ∃ 𝑟𝐴 ( 𝑟 𝑋𝑃 ( 𝑄 𝑟 ) ) ) )
7 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
8 7 ad2antrr ( ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) ∧ 𝑟𝐴 ) → 𝐾 ∈ Lat )
9 simplr3 ( ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) ∧ 𝑟𝐴 ) → 𝑄𝐴 )
10 1 5 atbase ( 𝑄𝐴𝑄𝐵 )
11 9 10 syl ( ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) ∧ 𝑟𝐴 ) → 𝑄𝐵 )
12 1 5 atbase ( 𝑟𝐴𝑟𝐵 )
13 12 adantl ( ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) ∧ 𝑟𝐴 ) → 𝑟𝐵 )
14 1 3 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑄𝐵𝑟𝐵 ) → ( 𝑄 𝑟 ) = ( 𝑟 𝑄 ) )
15 8 11 13 14 syl3anc ( ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) ∧ 𝑟𝐴 ) → ( 𝑄 𝑟 ) = ( 𝑟 𝑄 ) )
16 15 breq2d ( ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) ∧ 𝑟𝐴 ) → ( 𝑃 ( 𝑄 𝑟 ) ↔ 𝑃 ( 𝑟 𝑄 ) ) )
17 16 anbi2d ( ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) ∧ 𝑟𝐴 ) → ( ( 𝑟 𝑋𝑃 ( 𝑄 𝑟 ) ) ↔ ( 𝑟 𝑋𝑃 ( 𝑟 𝑄 ) ) ) )
18 17 rexbidva ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( ∃ 𝑟𝐴 ( 𝑟 𝑋𝑃 ( 𝑄 𝑟 ) ) ↔ ∃ 𝑟𝐴 ( 𝑟 𝑋𝑃 ( 𝑟 𝑄 ) ) ) )
19 6 18 sylibd ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( ( 𝑋0𝑃 ( 𝑋 𝑄 ) ) → ∃ 𝑟𝐴 ( 𝑟 𝑋𝑃 ( 𝑟 𝑄 ) ) ) )