Step |
Hyp |
Ref |
Expression |
1 |
|
cvrat4.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvrat4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cvrat4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cvrat4.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
5 |
|
cvrat4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
1 2 3 4 5
|
cvrat4 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ) ) |
7 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
9 |
|
simplr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝑄 ∈ 𝐴 ) |
10 |
1 5
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
11 |
9 10
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝑄 ∈ 𝐵 ) |
12 |
1 5
|
atbase |
⊢ ( 𝑟 ∈ 𝐴 → 𝑟 ∈ 𝐵 ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → 𝑟 ∈ 𝐵 ) |
14 |
1 3
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) → ( 𝑄 ∨ 𝑟 ) = ( 𝑟 ∨ 𝑄 ) ) |
15 |
8 11 13 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑟 ) = ( 𝑟 ∨ 𝑄 ) ) |
16 |
15
|
breq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → ( 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ↔ 𝑃 ≤ ( 𝑟 ∨ 𝑄 ) ) ) |
17 |
16
|
anbi2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐴 ) → ( ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ↔ ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑟 ∨ 𝑄 ) ) ) ) |
18 |
17
|
rexbidva |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑄 ∨ 𝑟 ) ) ↔ ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑟 ∨ 𝑄 ) ) ) ) |
19 |
6 18
|
sylibd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≠ 0 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ∃ 𝑟 ∈ 𝐴 ( 𝑟 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑟 ∨ 𝑄 ) ) ) ) |