Step |
Hyp |
Ref |
Expression |
1 |
|
cvrexch.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvrexch.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cvrexch.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cvrexch.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
5 |
1 2 3 4
|
cvrexchlem |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 → 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ) ) |
6 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ HL ) |
7 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
9 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
10 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
11 |
1 10
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) |
12 |
8 9 11
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) |
13 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
14 |
1 10
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
15 |
8 13 14
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
16 |
1 2 3 4
|
cvrexchlem |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
17 |
6 12 15 16
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
18 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
19 |
1 2 3 10
|
oldmj1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
20 |
18 19
|
syl3an1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
21 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
22 |
21
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
23 |
1 3
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
24 |
22 15 12 23
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
25 |
20 24
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
26 |
25
|
breq1d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ↔ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
27 |
1 2 3 10
|
oldmm1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
28 |
18 27
|
syl3an1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
29 |
1 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
30 |
22 15 12 29
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
31 |
28 30
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
32 |
31
|
breq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
33 |
17 26 32
|
3imtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
34 |
1 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
35 |
21 34
|
syl3an1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
36 |
1 10 4
|
cvrcon3b |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
37 |
8 13 35 36
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
38 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
39 |
21 38
|
syl3an1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
40 |
1 10 4
|
cvrcon3b |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
41 |
8 39 9 40
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
42 |
33 37 41
|
3imtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) → ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 ) ) |
43 |
5 42
|
impbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ) ) |