| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvrexch.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
cvrexch.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cvrexch.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
cvrexch.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
| 5 |
1 2 3 4
|
cvrexchlem |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 → 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ) ) |
| 6 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ HL ) |
| 7 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
| 9 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
| 10 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
| 11 |
1 10
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 12 |
8 9 11
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) |
| 13 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 14 |
1 10
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 15 |
8 13 14
|
syl2anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 16 |
1 2 3 4
|
cvrexchlem |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
| 17 |
6 12 15 16
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
| 18 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
| 19 |
1 2 3 10
|
oldmj1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 20 |
18 19
|
syl3an1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 21 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 23 |
1 3
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 24 |
22 15 12 23
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 25 |
20 24
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 26 |
25
|
breq1d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ↔ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 27 |
1 2 3 10
|
oldmm1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 28 |
18 27
|
syl3an1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 29 |
1 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 30 |
22 15 12 29
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 31 |
28 30
|
eqtrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 32 |
31
|
breq2d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) ) |
| 33 |
17 26 32
|
3imtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 34 |
1 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 35 |
21 34
|
syl3an1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 36 |
1 10 4
|
cvrcon3b |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 37 |
8 13 35 36
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ↔ ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) |
| 38 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 39 |
21 38
|
syl3an1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 40 |
1 10 4
|
cvrcon3b |
⊢ ( ( 𝐾 ∈ OP ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 41 |
8 39 9 40
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 ↔ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∧ 𝑌 ) ) ) ) |
| 42 |
33 37 41
|
3imtr4d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) → ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 ) ) |
| 43 |
5 42
|
impbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) 𝐶 𝑌 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑌 ) ) ) |