Description: The covers relation implies the "less than or equal to" relation. (Contributed by NM, 12-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cvrle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| cvrle.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| Assertion | cvrle | ⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 ≤ 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvrle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cvrle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | cvrle.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 4 | eqid | ⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) | |
| 5 | 1 4 3 | cvrlt | ⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 ( lt ‘ 𝐾 ) 𝑌 ) |
| 6 | 2 4 | pltval | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( lt ‘ 𝐾 ) 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 7 | 6 | simprbda | ⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ( lt ‘ 𝐾 ) 𝑌 ) → 𝑋 ≤ 𝑌 ) |
| 8 | 5 7 | syldan | ⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 ≤ 𝑌 ) |