Step |
Hyp |
Ref |
Expression |
1 |
|
cvrletr.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvrletr.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cvrletr.s |
⊢ < = ( lt ‘ 𝐾 ) |
4 |
|
cvrletr.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
5 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 𝐶 𝑌 ) → 𝐾 ∈ Poset ) |
6 |
|
simplr1 |
⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 ∈ 𝐵 ) |
7 |
|
simplr2 |
⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 𝐶 𝑌 ) → 𝑌 ∈ 𝐵 ) |
8 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 𝐶 𝑌 ) |
9 |
1 3 4
|
cvrlt |
⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 ) |
10 |
5 6 7 8 9
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 ) |
11 |
1 2 3
|
pltletr |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 < 𝑍 ) ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 < 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 < 𝑍 ) ) |
13 |
10 12
|
mpand |
⊢ ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑌 ≤ 𝑍 → 𝑋 < 𝑍 ) ) |
14 |
13
|
expimpd |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 𝐶 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 < 𝑍 ) ) |