| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cvrletr.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cvrletr.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cvrletr.s | 
							⊢  <   =  ( lt ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cvrletr.c | 
							⊢ 𝐶  =  (  ⋖  ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  ∧  𝑋 𝐶 𝑌 )  →  𝐾  ∈  Poset )  | 
						
						
							| 6 | 
							
								
							 | 
							simplr1 | 
							⊢ ( ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  ∧  𝑋 𝐶 𝑌 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							simplr2 | 
							⊢ ( ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  ∧  𝑋 𝐶 𝑌 )  →  𝑌  ∈  𝐵 )  | 
						
						
							| 8 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  ∧  𝑋 𝐶 𝑌 )  →  𝑋 𝐶 𝑌 )  | 
						
						
							| 9 | 
							
								1 3 4
							 | 
							cvrlt | 
							⊢ ( ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋 𝐶 𝑌 )  →  𝑋  <  𝑌 )  | 
						
						
							| 10 | 
							
								5 6 7 8 9
							 | 
							syl31anc | 
							⊢ ( ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  ∧  𝑋 𝐶 𝑌 )  →  𝑋  <  𝑌 )  | 
						
						
							| 11 | 
							
								1 2 3
							 | 
							pltletr | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  <  𝑌  ∧  𝑌  ≤  𝑍 )  →  𝑋  <  𝑍 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  ∧  𝑋 𝐶 𝑌 )  →  ( ( 𝑋  <  𝑌  ∧  𝑌  ≤  𝑍 )  →  𝑋  <  𝑍 ) )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							mpand | 
							⊢ ( ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  ∧  𝑋 𝐶 𝑌 )  →  ( 𝑌  ≤  𝑍  →  𝑋  <  𝑍 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							expimpd | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋 𝐶 𝑌  ∧  𝑌  ≤  𝑍 )  →  𝑋  <  𝑍 ) )  |