Metamath Proof Explorer


Theorem cvrletrN

Description: Property of an element above a covering. (Contributed by NM, 7-Dec-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cvrletr.b 𝐵 = ( Base ‘ 𝐾 )
cvrletr.l = ( le ‘ 𝐾 )
cvrletr.s < = ( lt ‘ 𝐾 )
cvrletr.c 𝐶 = ( ⋖ ‘ 𝐾 )
Assertion cvrletrN ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝐶 𝑌𝑌 𝑍 ) → 𝑋 < 𝑍 ) )

Proof

Step Hyp Ref Expression
1 cvrletr.b 𝐵 = ( Base ‘ 𝐾 )
2 cvrletr.l = ( le ‘ 𝐾 )
3 cvrletr.s < = ( lt ‘ 𝐾 )
4 cvrletr.c 𝐶 = ( ⋖ ‘ 𝐾 )
5 simpll ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑋 𝐶 𝑌 ) → 𝐾 ∈ Poset )
6 simplr1 ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋𝐵 )
7 simplr2 ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑋 𝐶 𝑌 ) → 𝑌𝐵 )
8 simpr ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 𝐶 𝑌 )
9 1 3 4 cvrlt ( ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 )
10 5 6 7 8 9 syl31anc ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 )
11 1 2 3 pltletr ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 < 𝑌𝑌 𝑍 ) → 𝑋 < 𝑍 ) )
12 11 adantr ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 < 𝑌𝑌 𝑍 ) → 𝑋 < 𝑍 ) )
13 10 12 mpand ( ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑌 𝑍𝑋 < 𝑍 ) )
14 13 expimpd ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 𝐶 𝑌𝑌 𝑍 ) → 𝑋 < 𝑍 ) )