Metamath Proof Explorer
Description: The covers relation implies the less-than relation. ( cvpss analog.)
(Contributed by NM, 8-Oct-2011)
|
|
Ref |
Expression |
|
Hypotheses |
cvrfval.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
|
|
cvrfval.s |
⊢ < = ( lt ‘ 𝐾 ) |
|
|
cvrfval.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
|
Assertion |
cvrlt |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cvrfval.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvrfval.s |
⊢ < = ( lt ‘ 𝐾 ) |
3 |
|
cvrfval.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
4 |
1 2 3
|
cvrval |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) ) |
5 |
4
|
simprbda |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 ) |