Metamath Proof Explorer


Theorem cvrlt

Description: The covers relation implies the less-than relation. ( cvpss analog.) (Contributed by NM, 8-Oct-2011)

Ref Expression
Hypotheses cvrfval.b 𝐵 = ( Base ‘ 𝐾 )
cvrfval.s < = ( lt ‘ 𝐾 )
cvrfval.c 𝐶 = ( ⋖ ‘ 𝐾 )
Assertion cvrlt ( ( ( 𝐾𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 )

Proof

Step Hyp Ref Expression
1 cvrfval.b 𝐵 = ( Base ‘ 𝐾 )
2 cvrfval.s < = ( lt ‘ 𝐾 )
3 cvrfval.c 𝐶 = ( ⋖ ‘ 𝐾 )
4 1 2 3 cvrval ( ( 𝐾𝐴𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧𝐵 ( 𝑋 < 𝑧𝑧 < 𝑌 ) ) ) )
5 4 simprbda ( ( ( 𝐾𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 )