| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cvrfval.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cvrfval.s | 
							⊢  <   =  ( lt ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cvrfval.c | 
							⊢ 𝐶  =  (  ⋖  ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							cvrval | 
							⊢ ( ( 𝐾  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 𝐶 𝑌  ↔  ( 𝑋  <  𝑌  ∧  ¬  ∃ 𝑧  ∈  𝐵 ( 𝑋  <  𝑧  ∧  𝑧  <  𝑌 ) ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							3adant3r3 | 
							⊢ ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋 𝐶 𝑌  ↔  ( 𝑋  <  𝑌  ∧  ¬  ∃ 𝑧  ∈  𝐵 ( 𝑋  <  𝑧  ∧  𝑧  <  𝑌 ) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ralnex | 
							⊢ ( ∀ 𝑧  ∈  𝐵 ¬  ( 𝑋  <  𝑧  ∧  𝑧  <  𝑌 )  ↔  ¬  ∃ 𝑧  ∈  𝐵 ( 𝑋  <  𝑧  ∧  𝑧  <  𝑌 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑧  =  𝑍  →  ( 𝑋  <  𝑧  ↔  𝑋  <  𝑍 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑧  =  𝑍  →  ( 𝑧  <  𝑌  ↔  𝑍  <  𝑌 ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							anbi12d | 
							⊢ ( 𝑧  =  𝑍  →  ( ( 𝑋  <  𝑧  ∧  𝑧  <  𝑌 )  ↔  ( 𝑋  <  𝑍  ∧  𝑍  <  𝑌 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							notbid | 
							⊢ ( 𝑧  =  𝑍  →  ( ¬  ( 𝑋  <  𝑧  ∧  𝑧  <  𝑌 )  ↔  ¬  ( 𝑋  <  𝑍  ∧  𝑍  <  𝑌 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							rspcv | 
							⊢ ( 𝑍  ∈  𝐵  →  ( ∀ 𝑧  ∈  𝐵 ¬  ( 𝑋  <  𝑧  ∧  𝑧  <  𝑌 )  →  ¬  ( 𝑋  <  𝑍  ∧  𝑍  <  𝑌 ) ) )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							biimtrrid | 
							⊢ ( 𝑍  ∈  𝐵  →  ( ¬  ∃ 𝑧  ∈  𝐵 ( 𝑋  <  𝑧  ∧  𝑧  <  𝑌 )  →  ¬  ( 𝑋  <  𝑍  ∧  𝑍  <  𝑌 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantld | 
							⊢ ( 𝑍  ∈  𝐵  →  ( ( 𝑋  <  𝑌  ∧  ¬  ∃ 𝑧  ∈  𝐵 ( 𝑋  <  𝑧  ∧  𝑧  <  𝑌 ) )  →  ¬  ( 𝑋  <  𝑍  ∧  𝑍  <  𝑌 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  →  ( ( 𝑋  <  𝑌  ∧  ¬  ∃ 𝑧  ∈  𝐵 ( 𝑋  <  𝑧  ∧  𝑧  <  𝑌 ) )  →  ¬  ( 𝑋  <  𝑍  ∧  𝑍  <  𝑌 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantl | 
							⊢ ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  <  𝑌  ∧  ¬  ∃ 𝑧  ∈  𝐵 ( 𝑋  <  𝑧  ∧  𝑧  <  𝑌 ) )  →  ¬  ( 𝑋  <  𝑍  ∧  𝑍  <  𝑌 ) ) )  | 
						
						
							| 16 | 
							
								5 15
							 | 
							sylbid | 
							⊢ ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋 𝐶 𝑌  →  ¬  ( 𝑋  <  𝑍  ∧  𝑍  <  𝑌 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							3impia | 
							⊢ ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  𝑋 𝐶 𝑌 )  →  ¬  ( 𝑋  <  𝑍  ∧  𝑍  <  𝑌 ) )  |