Step |
Hyp |
Ref |
Expression |
1 |
|
cvrfval.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvrfval.s |
⊢ < = ( lt ‘ 𝐾 ) |
3 |
|
cvrfval.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
4 |
1 2 3
|
cvrval |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) ) |
5 |
4
|
3adant3r3 |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) ) ) |
6 |
|
ralnex |
⊢ ( ∀ 𝑧 ∈ 𝐵 ¬ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ↔ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) |
7 |
|
breq2 |
⊢ ( 𝑧 = 𝑍 → ( 𝑋 < 𝑧 ↔ 𝑋 < 𝑍 ) ) |
8 |
|
breq1 |
⊢ ( 𝑧 = 𝑍 → ( 𝑧 < 𝑌 ↔ 𝑍 < 𝑌 ) ) |
9 |
7 8
|
anbi12d |
⊢ ( 𝑧 = 𝑍 → ( ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ↔ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
10 |
9
|
notbid |
⊢ ( 𝑧 = 𝑍 → ( ¬ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ↔ ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
11 |
10
|
rspcv |
⊢ ( 𝑍 ∈ 𝐵 → ( ∀ 𝑧 ∈ 𝐵 ¬ ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
12 |
6 11
|
syl5bir |
⊢ ( 𝑍 ∈ 𝐵 → ( ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
13 |
12
|
adantld |
⊢ ( 𝑍 ∈ 𝐵 → ( ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑌 ∧ ¬ ∃ 𝑧 ∈ 𝐵 ( 𝑋 < 𝑧 ∧ 𝑧 < 𝑌 ) ) → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
16 |
5 15
|
sylbid |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐶 𝑌 → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
17 |
16
|
3impia |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) |