Metamath Proof Explorer


Theorem cvrnbtwn2

Description: The covers relation implies no in-betweenness. ( cvnbtwn2 analog.) (Contributed by NM, 17-Nov-2011)

Ref Expression
Hypotheses cvrletr.b 𝐵 = ( Base ‘ 𝐾 )
cvrletr.l = ( le ‘ 𝐾 )
cvrletr.s < = ( lt ‘ 𝐾 )
cvrletr.c 𝐶 = ( ⋖ ‘ 𝐾 )
Assertion cvrnbtwn2 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 < 𝑍𝑍 𝑌 ) ↔ 𝑍 = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 cvrletr.b 𝐵 = ( Base ‘ 𝐾 )
2 cvrletr.l = ( le ‘ 𝐾 )
3 cvrletr.s < = ( lt ‘ 𝐾 )
4 cvrletr.c 𝐶 = ( ⋖ ‘ 𝐾 )
5 1 3 4 cvrnbtwn ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ¬ ( 𝑋 < 𝑍𝑍 < 𝑌 ) )
6 5 3expia ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝐶 𝑌 → ¬ ( 𝑋 < 𝑍𝑍 < 𝑌 ) ) )
7 iman ( ( ( 𝑋 < 𝑍𝑍 𝑌 ) → 𝑍 = 𝑌 ) ↔ ¬ ( ( 𝑋 < 𝑍𝑍 𝑌 ) ∧ ¬ 𝑍 = 𝑌 ) )
8 anass ( ( ( 𝑋 < 𝑍𝑍 𝑌 ) ∧ ¬ 𝑍 = 𝑌 ) ↔ ( 𝑋 < 𝑍 ∧ ( 𝑍 𝑌 ∧ ¬ 𝑍 = 𝑌 ) ) )
9 simpl ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝐾 ∈ Poset )
10 simpr3 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑍𝐵 )
11 simpr2 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌𝐵 )
12 2 3 pltval ( ( 𝐾 ∈ Poset ∧ 𝑍𝐵𝑌𝐵 ) → ( 𝑍 < 𝑌 ↔ ( 𝑍 𝑌𝑍𝑌 ) ) )
13 9 10 11 12 syl3anc ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑍 < 𝑌 ↔ ( 𝑍 𝑌𝑍𝑌 ) ) )
14 df-ne ( 𝑍𝑌 ↔ ¬ 𝑍 = 𝑌 )
15 14 anbi2i ( ( 𝑍 𝑌𝑍𝑌 ) ↔ ( 𝑍 𝑌 ∧ ¬ 𝑍 = 𝑌 ) )
16 13 15 bitrdi ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑍 < 𝑌 ↔ ( 𝑍 𝑌 ∧ ¬ 𝑍 = 𝑌 ) ) )
17 16 anbi2d ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( 𝑋 < 𝑍𝑍 < 𝑌 ) ↔ ( 𝑋 < 𝑍 ∧ ( 𝑍 𝑌 ∧ ¬ 𝑍 = 𝑌 ) ) ) )
18 8 17 bitr4id ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ( ( 𝑋 < 𝑍𝑍 𝑌 ) ∧ ¬ 𝑍 = 𝑌 ) ↔ ( 𝑋 < 𝑍𝑍 < 𝑌 ) ) )
19 18 notbid ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ¬ ( ( 𝑋 < 𝑍𝑍 𝑌 ) ∧ ¬ 𝑍 = 𝑌 ) ↔ ¬ ( 𝑋 < 𝑍𝑍 < 𝑌 ) ) )
20 7 19 bitr2id ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( ¬ ( 𝑋 < 𝑍𝑍 < 𝑌 ) ↔ ( ( 𝑋 < 𝑍𝑍 𝑌 ) → 𝑍 = 𝑌 ) ) )
21 6 20 sylibd ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝐶 𝑌 → ( ( 𝑋 < 𝑍𝑍 𝑌 ) → 𝑍 = 𝑌 ) ) )
22 21 3impia ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 < 𝑍𝑍 𝑌 ) → 𝑍 = 𝑌 ) )
23 1 3 4 cvrlt ( ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 )
24 23 ex ( ( 𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝐶 𝑌𝑋 < 𝑌 ) )
25 24 3adant3r3 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑋 𝐶 𝑌𝑋 < 𝑌 ) )
26 25 3impia ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 )
27 breq2 ( 𝑍 = 𝑌 → ( 𝑋 < 𝑍𝑋 < 𝑌 ) )
28 26 27 syl5ibrcom ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑍 = 𝑌𝑋 < 𝑍 ) )
29 1 2 posref ( ( 𝐾 ∈ Poset ∧ 𝑌𝐵 ) → 𝑌 𝑌 )
30 29 3ad2antr2 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → 𝑌 𝑌 )
31 breq1 ( 𝑍 = 𝑌 → ( 𝑍 𝑌𝑌 𝑌 ) )
32 30 31 syl5ibrcom ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ) → ( 𝑍 = 𝑌𝑍 𝑌 ) )
33 32 3adant3 ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑍 = 𝑌𝑍 𝑌 ) )
34 28 33 jcad ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑍 = 𝑌 → ( 𝑋 < 𝑍𝑍 𝑌 ) ) )
35 22 34 impbid ( ( 𝐾 ∈ Poset ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 < 𝑍𝑍 𝑌 ) ↔ 𝑍 = 𝑌 ) )