| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cvrletr.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cvrletr.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cvrletr.s | 
							⊢  <   =  ( lt ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cvrletr.c | 
							⊢ 𝐶  =  (  ⋖  ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								1 3 4
							 | 
							cvrnbtwn | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  𝑋 𝐶 𝑌 )  →  ¬  ( 𝑋  <  𝑍  ∧  𝑍  <  𝑌 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							3expia | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋 𝐶 𝑌  →  ¬  ( 𝑋  <  𝑍  ∧  𝑍  <  𝑌 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							iman | 
							⊢ ( ( ( 𝑋  <  𝑍  ∧  𝑍  ≤  𝑌 )  →  𝑍  =  𝑌 )  ↔  ¬  ( ( 𝑋  <  𝑍  ∧  𝑍  ≤  𝑌 )  ∧  ¬  𝑍  =  𝑌 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							anass | 
							⊢ ( ( ( 𝑋  <  𝑍  ∧  𝑍  ≤  𝑌 )  ∧  ¬  𝑍  =  𝑌 )  ↔  ( 𝑋  <  𝑍  ∧  ( 𝑍  ≤  𝑌  ∧  ¬  𝑍  =  𝑌 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝐾  ∈  Poset )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr3 | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝑍  ∈  𝐵 )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr2 | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝑌  ∈  𝐵 )  | 
						
						
							| 12 | 
							
								2 3
							 | 
							pltval | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  𝑍  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑍  <  𝑌  ↔  ( 𝑍  ≤  𝑌  ∧  𝑍  ≠  𝑌 ) ) )  | 
						
						
							| 13 | 
							
								9 10 11 12
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑍  <  𝑌  ↔  ( 𝑍  ≤  𝑌  ∧  𝑍  ≠  𝑌 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							df-ne | 
							⊢ ( 𝑍  ≠  𝑌  ↔  ¬  𝑍  =  𝑌 )  | 
						
						
							| 15 | 
							
								14
							 | 
							anbi2i | 
							⊢ ( ( 𝑍  ≤  𝑌  ∧  𝑍  ≠  𝑌 )  ↔  ( 𝑍  ≤  𝑌  ∧  ¬  𝑍  =  𝑌 ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							bitrdi | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑍  <  𝑌  ↔  ( 𝑍  ≤  𝑌  ∧  ¬  𝑍  =  𝑌 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							anbi2d | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  <  𝑍  ∧  𝑍  <  𝑌 )  ↔  ( 𝑋  <  𝑍  ∧  ( 𝑍  ≤  𝑌  ∧  ¬  𝑍  =  𝑌 ) ) ) )  | 
						
						
							| 18 | 
							
								8 17
							 | 
							bitr4id | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( ( 𝑋  <  𝑍  ∧  𝑍  ≤  𝑌 )  ∧  ¬  𝑍  =  𝑌 )  ↔  ( 𝑋  <  𝑍  ∧  𝑍  <  𝑌 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							notbid | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ¬  ( ( 𝑋  <  𝑍  ∧  𝑍  ≤  𝑌 )  ∧  ¬  𝑍  =  𝑌 )  ↔  ¬  ( 𝑋  <  𝑍  ∧  𝑍  <  𝑌 ) ) )  | 
						
						
							| 20 | 
							
								7 19
							 | 
							bitr2id | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ¬  ( 𝑋  <  𝑍  ∧  𝑍  <  𝑌 )  ↔  ( ( 𝑋  <  𝑍  ∧  𝑍  ≤  𝑌 )  →  𝑍  =  𝑌 ) ) )  | 
						
						
							| 21 | 
							
								6 20
							 | 
							sylibd | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋 𝐶 𝑌  →  ( ( 𝑋  <  𝑍  ∧  𝑍  ≤  𝑌 )  →  𝑍  =  𝑌 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							3impia | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  𝑋 𝐶 𝑌 )  →  ( ( 𝑋  <  𝑍  ∧  𝑍  ≤  𝑌 )  →  𝑍  =  𝑌 ) )  | 
						
						
							| 23 | 
							
								1 3 4
							 | 
							cvrlt | 
							⊢ ( ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋 𝐶 𝑌 )  →  𝑋  <  𝑌 )  | 
						
						
							| 24 | 
							
								23
							 | 
							ex | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 𝐶 𝑌  →  𝑋  <  𝑌 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							3adant3r3 | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋 𝐶 𝑌  →  𝑋  <  𝑌 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							3impia | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  𝑋 𝐶 𝑌 )  →  𝑋  <  𝑌 )  | 
						
						
							| 27 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑍  =  𝑌  →  ( 𝑋  <  𝑍  ↔  𝑋  <  𝑌 ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							syl5ibrcom | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  𝑋 𝐶 𝑌 )  →  ( 𝑍  =  𝑌  →  𝑋  <  𝑍 ) )  | 
						
						
							| 29 | 
							
								1 2
							 | 
							posref | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  𝑌  ∈  𝐵 )  →  𝑌  ≤  𝑌 )  | 
						
						
							| 30 | 
							
								29
							 | 
							3ad2antr2 | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  𝑌  ≤  𝑌 )  | 
						
						
							| 31 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑍  =  𝑌  →  ( 𝑍  ≤  𝑌  ↔  𝑌  ≤  𝑌 ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							syl5ibrcom | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑍  =  𝑌  →  𝑍  ≤  𝑌 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							3adant3 | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  𝑋 𝐶 𝑌 )  →  ( 𝑍  =  𝑌  →  𝑍  ≤  𝑌 ) )  | 
						
						
							| 34 | 
							
								28 33
							 | 
							jcad | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  𝑋 𝐶 𝑌 )  →  ( 𝑍  =  𝑌  →  ( 𝑋  <  𝑍  ∧  𝑍  ≤  𝑌 ) ) )  | 
						
						
							| 35 | 
							
								22 34
							 | 
							impbid | 
							⊢ ( ( 𝐾  ∈  Poset  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  𝑋 𝐶 𝑌 )  →  ( ( 𝑋  <  𝑍  ∧  𝑍  ≤  𝑌 )  ↔  𝑍  =  𝑌 ) )  |