Step |
Hyp |
Ref |
Expression |
1 |
|
cvrletr.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvrletr.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cvrletr.s |
⊢ < = ( lt ‘ 𝐾 ) |
4 |
|
cvrletr.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
5 |
1 3 4
|
cvrnbtwn |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) |
6 |
5
|
3expia |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐶 𝑌 → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
7 |
|
iman |
⊢ ( ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) → 𝑍 = 𝑌 ) ↔ ¬ ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ¬ 𝑍 = 𝑌 ) ) |
8 |
|
anass |
⊢ ( ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ¬ 𝑍 = 𝑌 ) ↔ ( 𝑋 < 𝑍 ∧ ( 𝑍 ≤ 𝑌 ∧ ¬ 𝑍 = 𝑌 ) ) ) |
9 |
|
simpl |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ Poset ) |
10 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
11 |
|
simpr2 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
12 |
2 3
|
pltval |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑍 < 𝑌 ↔ ( 𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌 ) ) ) |
13 |
9 10 11 12
|
syl3anc |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑍 < 𝑌 ↔ ( 𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌 ) ) ) |
14 |
|
df-ne |
⊢ ( 𝑍 ≠ 𝑌 ↔ ¬ 𝑍 = 𝑌 ) |
15 |
14
|
anbi2i |
⊢ ( ( 𝑍 ≤ 𝑌 ∧ 𝑍 ≠ 𝑌 ) ↔ ( 𝑍 ≤ 𝑌 ∧ ¬ 𝑍 = 𝑌 ) ) |
16 |
13 15
|
bitrdi |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑍 < 𝑌 ↔ ( 𝑍 ≤ 𝑌 ∧ ¬ 𝑍 = 𝑌 ) ) ) |
17 |
16
|
anbi2d |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ↔ ( 𝑋 < 𝑍 ∧ ( 𝑍 ≤ 𝑌 ∧ ¬ 𝑍 = 𝑌 ) ) ) ) |
18 |
8 17
|
bitr4id |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ¬ 𝑍 = 𝑌 ) ↔ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
19 |
18
|
notbid |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ¬ ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ∧ ¬ 𝑍 = 𝑌 ) ↔ ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
20 |
7 19
|
bitr2id |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ↔ ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) → 𝑍 = 𝑌 ) ) ) |
21 |
6 20
|
sylibd |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐶 𝑌 → ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) → 𝑍 = 𝑌 ) ) ) |
22 |
21
|
3impia |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) → 𝑍 = 𝑌 ) ) |
23 |
1 3 4
|
cvrlt |
⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 ) |
24 |
23
|
ex |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 → 𝑋 < 𝑌 ) ) |
25 |
24
|
3adant3r3 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐶 𝑌 → 𝑋 < 𝑌 ) ) |
26 |
25
|
3impia |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 ) |
27 |
|
breq2 |
⊢ ( 𝑍 = 𝑌 → ( 𝑋 < 𝑍 ↔ 𝑋 < 𝑌 ) ) |
28 |
26 27
|
syl5ibrcom |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑍 = 𝑌 → 𝑋 < 𝑍 ) ) |
29 |
1 2
|
posref |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ≤ 𝑌 ) |
30 |
29
|
3ad2antr2 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ≤ 𝑌 ) |
31 |
|
breq1 |
⊢ ( 𝑍 = 𝑌 → ( 𝑍 ≤ 𝑌 ↔ 𝑌 ≤ 𝑌 ) ) |
32 |
30 31
|
syl5ibrcom |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑍 = 𝑌 → 𝑍 ≤ 𝑌 ) ) |
33 |
32
|
3adant3 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑍 = 𝑌 → 𝑍 ≤ 𝑌 ) ) |
34 |
28 33
|
jcad |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑍 = 𝑌 → ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ) ) |
35 |
22 34
|
impbid |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 < 𝑍 ∧ 𝑍 ≤ 𝑌 ) ↔ 𝑍 = 𝑌 ) ) |