Step |
Hyp |
Ref |
Expression |
1 |
|
cvrletr.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvrletr.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cvrletr.s |
⊢ < = ( lt ‘ 𝐾 ) |
4 |
|
cvrletr.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
5 |
1 3 4
|
cvrnbtwn |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ) |
6 |
2 3
|
pltval |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 < 𝑍 ↔ ( 𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍 ) ) ) |
7 |
6
|
3adant3r2 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 < 𝑍 ↔ ( 𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍 ) ) ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑋 < 𝑍 ↔ ( 𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍 ) ) ) |
9 |
8
|
anbi1d |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ↔ ( ( 𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍 ) ∧ 𝑍 < 𝑌 ) ) ) |
10 |
9
|
notbid |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ↔ ¬ ( ( 𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍 ) ∧ 𝑍 < 𝑌 ) ) ) |
11 |
|
an32 |
⊢ ( ( ( 𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍 ) ∧ 𝑍 < 𝑌 ) ↔ ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 < 𝑌 ) ∧ 𝑋 ≠ 𝑍 ) ) |
12 |
|
df-ne |
⊢ ( 𝑋 ≠ 𝑍 ↔ ¬ 𝑋 = 𝑍 ) |
13 |
12
|
anbi2i |
⊢ ( ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 < 𝑌 ) ∧ 𝑋 ≠ 𝑍 ) ↔ ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 < 𝑌 ) ∧ ¬ 𝑋 = 𝑍 ) ) |
14 |
11 13
|
bitri |
⊢ ( ( ( 𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍 ) ∧ 𝑍 < 𝑌 ) ↔ ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 < 𝑌 ) ∧ ¬ 𝑋 = 𝑍 ) ) |
15 |
14
|
notbii |
⊢ ( ¬ ( ( 𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍 ) ∧ 𝑍 < 𝑌 ) ↔ ¬ ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 < 𝑌 ) ∧ ¬ 𝑋 = 𝑍 ) ) |
16 |
|
iman |
⊢ ( ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 < 𝑌 ) → 𝑋 = 𝑍 ) ↔ ¬ ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 < 𝑌 ) ∧ ¬ 𝑋 = 𝑍 ) ) |
17 |
15 16
|
bitr4i |
⊢ ( ¬ ( ( 𝑋 ≤ 𝑍 ∧ 𝑋 ≠ 𝑍 ) ∧ 𝑍 < 𝑌 ) ↔ ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 < 𝑌 ) → 𝑋 = 𝑍 ) ) |
18 |
10 17
|
bitrdi |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ¬ ( 𝑋 < 𝑍 ∧ 𝑍 < 𝑌 ) ↔ ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 < 𝑌 ) → 𝑋 = 𝑍 ) ) ) |
19 |
5 18
|
mpbid |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 < 𝑌 ) → 𝑋 = 𝑍 ) ) |
20 |
1 2
|
posref |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ≤ 𝑋 ) |
21 |
|
breq2 |
⊢ ( 𝑋 = 𝑍 → ( 𝑋 ≤ 𝑋 ↔ 𝑋 ≤ 𝑍 ) ) |
22 |
20 21
|
syl5ibcom |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 = 𝑍 → 𝑋 ≤ 𝑍 ) ) |
23 |
22
|
3ad2antr1 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 = 𝑍 → 𝑋 ≤ 𝑍 ) ) |
24 |
23
|
3adant3 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑋 = 𝑍 → 𝑋 ≤ 𝑍 ) ) |
25 |
|
simp1 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝐾 ∈ Poset ) |
26 |
|
simp21 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 ∈ 𝐵 ) |
27 |
|
simp22 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑌 ∈ 𝐵 ) |
28 |
|
simp3 |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 𝐶 𝑌 ) |
29 |
1 3 4
|
cvrlt |
⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 ) |
30 |
25 26 27 28 29
|
syl31anc |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 ) |
31 |
|
breq1 |
⊢ ( 𝑋 = 𝑍 → ( 𝑋 < 𝑌 ↔ 𝑍 < 𝑌 ) ) |
32 |
30 31
|
syl5ibcom |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑋 = 𝑍 → 𝑍 < 𝑌 ) ) |
33 |
24 32
|
jcad |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑋 = 𝑍 → ( 𝑋 ≤ 𝑍 ∧ 𝑍 < 𝑌 ) ) ) |
34 |
19 33
|
impbid |
⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( ( 𝑋 ≤ 𝑍 ∧ 𝑍 < 𝑌 ) ↔ 𝑋 = 𝑍 ) ) |