Description: The covers relation implies inequality. (Contributed by NM, 13-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvrne.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| cvrne.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | ||
| Assertion | cvrne | ⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 ≠ 𝑌 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cvrne.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | cvrne.c | ⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 ) | |
| 4 | 1 3 2 | cvrlt | ⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 ( lt ‘ 𝐾 ) 𝑌 ) | 
| 5 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 6 | 5 3 | pltval | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( lt ‘ 𝐾 ) 𝑌 ↔ ( 𝑋 ( le ‘ 𝐾 ) 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) | 
| 7 | 6 | simplbda | ⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ( lt ‘ 𝐾 ) 𝑌 ) → 𝑋 ≠ 𝑌 ) | 
| 8 | 4 7 | syldan | ⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 ≠ 𝑌 ) |