Metamath Proof Explorer


Theorem cvrne

Description: The covers relation implies inequality. (Contributed by NM, 13-Oct-2011)

Ref Expression
Hypotheses cvrne.b 𝐵 = ( Base ‘ 𝐾 )
cvrne.c 𝐶 = ( ⋖ ‘ 𝐾 )
Assertion cvrne ( ( ( 𝐾𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋𝑌 )

Proof

Step Hyp Ref Expression
1 cvrne.b 𝐵 = ( Base ‘ 𝐾 )
2 cvrne.c 𝐶 = ( ⋖ ‘ 𝐾 )
3 eqid ( lt ‘ 𝐾 ) = ( lt ‘ 𝐾 )
4 1 3 2 cvrlt ( ( ( 𝐾𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 ( lt ‘ 𝐾 ) 𝑌 )
5 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
6 5 3 pltval ( ( 𝐾𝐴𝑋𝐵𝑌𝐵 ) → ( 𝑋 ( lt ‘ 𝐾 ) 𝑌 ↔ ( 𝑋 ( le ‘ 𝐾 ) 𝑌𝑋𝑌 ) ) )
7 6 simplbda ( ( ( 𝐾𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑋 ( lt ‘ 𝐾 ) 𝑌 ) → 𝑋𝑌 )
8 4 7 syldan ( ( ( 𝐾𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋𝑌 )