Step |
Hyp |
Ref |
Expression |
1 |
|
cvrne.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvrne.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
3 |
|
eqid |
⊢ 𝑋 = 𝑋 |
4 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑋 ) → 𝐾 ∈ 𝐴 ) |
5 |
|
simplr |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑋 ) → 𝑋 ∈ 𝐵 ) |
6 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑋 ) → 𝑋 𝐶 𝑋 ) |
7 |
1 2
|
cvrne |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑋 ) → 𝑋 ≠ 𝑋 ) |
8 |
4 5 5 6 7
|
syl31anc |
⊢ ( ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑋 ) → 𝑋 ≠ 𝑋 ) |
9 |
8
|
ex |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑋 → 𝑋 ≠ 𝑋 ) ) |
10 |
9
|
necon2bd |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 = 𝑋 → ¬ 𝑋 𝐶 𝑋 ) ) |
11 |
3 10
|
mpi |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ¬ 𝑋 𝐶 𝑋 ) |