| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cvrne.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cvrne.c | 
							⊢ 𝐶  =  (  ⋖  ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ 𝑋  =  𝑋  | 
						
						
							| 4 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐾  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  𝑋 𝐶 𝑋 )  →  𝐾  ∈  𝐴 )  | 
						
						
							| 5 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝐾  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  𝑋 𝐶 𝑋 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐾  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  𝑋 𝐶 𝑋 )  →  𝑋 𝐶 𝑋 )  | 
						
						
							| 7 | 
							
								1 2
							 | 
							cvrne | 
							⊢ ( ( ( 𝐾  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  ∧  𝑋 𝐶 𝑋 )  →  𝑋  ≠  𝑋 )  | 
						
						
							| 8 | 
							
								4 5 5 6 7
							 | 
							syl31anc | 
							⊢ ( ( ( 𝐾  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  ∧  𝑋 𝐶 𝑋 )  →  𝑋  ≠  𝑋 )  | 
						
						
							| 9 | 
							
								8
							 | 
							ex | 
							⊢ ( ( 𝐾  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋 𝐶 𝑋  →  𝑋  ≠  𝑋 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							necon2bd | 
							⊢ ( ( 𝐾  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  =  𝑋  →  ¬  𝑋 𝐶 𝑋 ) )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							mpi | 
							⊢ ( ( 𝐾  ∈  𝐴  ∧  𝑋  ∈  𝐵 )  →  ¬  𝑋 𝐶 𝑋 )  |