Metamath Proof Explorer


Theorem cvrnrefN

Description: The covers relation is not reflexive. ( cvnref analog.) (Contributed by NM, 1-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cvrne.b 𝐵 = ( Base ‘ 𝐾 )
cvrne.c 𝐶 = ( ⋖ ‘ 𝐾 )
Assertion cvrnrefN ( ( 𝐾𝐴𝑋𝐵 ) → ¬ 𝑋 𝐶 𝑋 )

Proof

Step Hyp Ref Expression
1 cvrne.b 𝐵 = ( Base ‘ 𝐾 )
2 cvrne.c 𝐶 = ( ⋖ ‘ 𝐾 )
3 eqid 𝑋 = 𝑋
4 simpll ( ( ( 𝐾𝐴𝑋𝐵 ) ∧ 𝑋 𝐶 𝑋 ) → 𝐾𝐴 )
5 simplr ( ( ( 𝐾𝐴𝑋𝐵 ) ∧ 𝑋 𝐶 𝑋 ) → 𝑋𝐵 )
6 simpr ( ( ( 𝐾𝐴𝑋𝐵 ) ∧ 𝑋 𝐶 𝑋 ) → 𝑋 𝐶 𝑋 )
7 1 2 cvrne ( ( ( 𝐾𝐴𝑋𝐵𝑋𝐵 ) ∧ 𝑋 𝐶 𝑋 ) → 𝑋𝑋 )
8 4 5 5 6 7 syl31anc ( ( ( 𝐾𝐴𝑋𝐵 ) ∧ 𝑋 𝐶 𝑋 ) → 𝑋𝑋 )
9 8 ex ( ( 𝐾𝐴𝑋𝐵 ) → ( 𝑋 𝐶 𝑋𝑋𝑋 ) )
10 9 necon2bd ( ( 𝐾𝐴𝑋𝐵 ) → ( 𝑋 = 𝑋 → ¬ 𝑋 𝐶 𝑋 ) )
11 3 10 mpi ( ( 𝐾𝐴𝑋𝐵 ) → ¬ 𝑋 𝐶 𝑋 )