| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvrntr.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | cvrntr.c | ⊢ 𝐶  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 3 |  | eqid | ⊢ ( lt ‘ 𝐾 )  =  ( lt ‘ 𝐾 ) | 
						
							| 4 | 1 3 2 | cvrlt | ⊢ ( ( ( 𝐾  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋 𝐶 𝑌 )  →  𝑋 ( lt ‘ 𝐾 ) 𝑌 ) | 
						
							| 5 | 4 | ex | ⊢ ( ( 𝐾  ∈  𝐴  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋 𝐶 𝑌  →  𝑋 ( lt ‘ 𝐾 ) 𝑌 ) ) | 
						
							| 6 | 5 | 3adant3r3 | ⊢ ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( 𝑋 𝐶 𝑌  →  𝑋 ( lt ‘ 𝐾 ) 𝑌 ) ) | 
						
							| 7 | 1 3 2 | ltcvrntr | ⊢ ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋 ( lt ‘ 𝐾 ) 𝑌  ∧  𝑌 𝐶 𝑍 )  →  ¬  𝑋 𝐶 𝑍 ) ) | 
						
							| 8 | 6 7 | syland | ⊢ ( ( 𝐾  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋 𝐶 𝑌  ∧  𝑌 𝐶 𝑍 )  →  ¬  𝑋 𝐶 𝑍 ) ) |