Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Hilbert lattices
cvrp
Metamath Proof Explorer
Description: A Hilbert lattice satisfies the covering property of Definition 7.4 of
MaedaMaeda p. 31 and its converse. ( cvp analog.) (Contributed by NM , 18-Nov-2011)
Ref
Expression
Hypotheses
cvrp.b
⊢ 𝐵 = ( Base ‘ 𝐾 )
cvrp.j
⊢ ∨ = ( join ‘ 𝐾 )
cvrp.m
⊢ ∧ = ( meet ‘ 𝐾 )
cvrp.z
⊢ 0 = ( 0. ‘ 𝐾 )
cvrp.c
⊢ 𝐶 = ( ⋖ ‘ 𝐾 )
cvrp.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
Assertion
cvrp
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑋 ∧ 𝑃 ) = 0 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) )
Proof
Step
Hyp
Ref
Expression
1
cvrp.b
⊢ 𝐵 = ( Base ‘ 𝐾 )
2
cvrp.j
⊢ ∨ = ( join ‘ 𝐾 )
3
cvrp.m
⊢ ∧ = ( meet ‘ 𝐾 )
4
cvrp.z
⊢ 0 = ( 0. ‘ 𝐾 )
5
cvrp.c
⊢ 𝐶 = ( ⋖ ‘ 𝐾 )
6
cvrp.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
7
hlomcmcv
⊢ ( 𝐾 ∈ HL → ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) )
8
1 2 3 4 5 6
cvlcvrp
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑋 ∧ 𝑃 ) = 0 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) )
9
7 8
syl3an1
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑋 ∧ 𝑃 ) = 0 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑃 ) ) )