Step |
Hyp |
Ref |
Expression |
1 |
|
cvrval4.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cvrval4.s |
⊢ < = ( lt ‘ 𝐾 ) |
3 |
|
cvrval4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cvrval4.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
5 |
|
cvrval4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
1 2 4
|
cvrlt |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑋 < 𝑌 ) |
7 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
8 |
1 7 3 4 5
|
cvrval3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) ) ) |
9 |
|
simpr |
⊢ ( ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) → ( 𝑋 ∨ 𝑝 ) = 𝑌 ) |
10 |
9
|
reximi |
⊢ ( ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑋 ∨ 𝑝 ) = 𝑌 ) |
11 |
8 10
|
syl6bi |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 → ∃ 𝑝 ∈ 𝐴 ( 𝑋 ∨ 𝑝 ) = 𝑌 ) ) |
12 |
11
|
imp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ∃ 𝑝 ∈ 𝐴 ( 𝑋 ∨ 𝑝 ) = 𝑌 ) |
13 |
6 12
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑋 < 𝑌 ∧ ∃ 𝑝 ∈ 𝐴 ( 𝑋 ∨ 𝑝 ) = 𝑌 ) ) |
14 |
13
|
ex |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 → ( 𝑋 < 𝑌 ∧ ∃ 𝑝 ∈ 𝐴 ( 𝑋 ∨ 𝑝 ) = 𝑌 ) ) ) |
15 |
|
simp1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ 𝐴 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) → 𝑋 < 𝑌 ) |
16 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ 𝐴 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) → ( 𝑋 ∨ 𝑝 ) = 𝑌 ) |
17 |
15 16
|
breqtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ 𝐴 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) → 𝑋 < ( 𝑋 ∨ 𝑝 ) ) |
18 |
|
simp1l1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ 𝐴 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) → 𝐾 ∈ HL ) |
19 |
|
simp1l2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ 𝐴 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) → 𝑋 ∈ 𝐵 ) |
20 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ 𝐴 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) → 𝑝 ∈ 𝐴 ) |
21 |
1 7 3 4 5
|
cvr1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐴 ) → ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑋 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑝 ) ) ) |
22 |
18 19 20 21
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ 𝐴 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) → ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑋 ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑝 ) ) ) |
23 |
1 2 3 4 5
|
cvr2N |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑝 ∈ 𝐴 ) → ( 𝑋 < ( 𝑋 ∨ 𝑝 ) ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑝 ) ) ) |
24 |
18 19 20 23
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ 𝐴 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) → ( 𝑋 < ( 𝑋 ∨ 𝑝 ) ↔ 𝑋 𝐶 ( 𝑋 ∨ 𝑝 ) ) ) |
25 |
22 24
|
bitr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ 𝐴 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) → ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑋 ↔ 𝑋 < ( 𝑋 ∨ 𝑝 ) ) ) |
26 |
17 25
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ 𝐴 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) → ¬ 𝑝 ( le ‘ 𝐾 ) 𝑋 ) |
27 |
26 16
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) ∧ 𝑝 ∈ 𝐴 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) → ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) ) |
28 |
27
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑝 ∈ 𝐴 → ( ( 𝑋 ∨ 𝑝 ) = 𝑌 → ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) ) ) ) |
29 |
28
|
reximdvai |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( ∃ 𝑝 ∈ 𝐴 ( 𝑋 ∨ 𝑝 ) = 𝑌 → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) ) ) |
30 |
29
|
expimpd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 < 𝑌 ∧ ∃ 𝑝 ∈ 𝐴 ( 𝑋 ∨ 𝑝 ) = 𝑌 ) → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ( le ‘ 𝐾 ) 𝑋 ∧ ( 𝑋 ∨ 𝑝 ) = 𝑌 ) ) ) |
31 |
30 8
|
sylibrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 < 𝑌 ∧ ∃ 𝑝 ∈ 𝐴 ( 𝑋 ∨ 𝑝 ) = 𝑌 ) → 𝑋 𝐶 𝑌 ) ) |
32 |
14 31
|
impbid |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 < 𝑌 ∧ ∃ 𝑝 ∈ 𝐴 ( 𝑋 ∨ 𝑝 ) = 𝑌 ) ) ) |