Metamath Proof Explorer


Theorem cvsclm

Description: A subcomplex vector space is a subcomplex module. (Contributed by Thierry Arnoux, 22-May-2019)

Ref Expression
Hypothesis cvslvec.1 ( 𝜑𝑊 ∈ ℂVec )
Assertion cvsclm ( 𝜑𝑊 ∈ ℂMod )

Proof

Step Hyp Ref Expression
1 cvslvec.1 ( 𝜑𝑊 ∈ ℂVec )
2 df-cvs ℂVec = ( ℂMod ∩ LVec )
3 2 elin2 ( 𝑊 ∈ ℂVec ↔ ( 𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec ) )
4 3 simplbi ( 𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod )
5 1 4 syl ( 𝜑𝑊 ∈ ℂMod )