Step |
Hyp |
Ref |
Expression |
1 |
|
cvsdiv.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
cvsdiv.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
|
simpl |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝑊 ∈ ℂVec ) |
4 |
3
|
cvsclm |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝑊 ∈ ℂMod ) |
5 |
1 2
|
clmsubrg |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
7 |
|
simpr1 |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ 𝐾 ) |
8 |
|
simpr2 |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ 𝐾 ) |
9 |
|
simpr3 |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ≠ 0 ) |
10 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( 𝐾 ∖ { 0 } ) ↔ ( 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) |
11 |
8 9 10
|
sylanbrc |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ( 𝐾 ∖ { 0 } ) ) |
12 |
1 2
|
cvsunit |
⊢ ( 𝑊 ∈ ℂVec → ( 𝐾 ∖ { 0 } ) = ( Unit ‘ 𝐹 ) ) |
13 |
3 12
|
syl |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐾 ∖ { 0 } ) = ( Unit ‘ 𝐹 ) ) |
14 |
1 2
|
clmsca |
⊢ ( 𝑊 ∈ ℂMod → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
15 |
4 14
|
syl |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
16 |
15
|
fveq2d |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( Unit ‘ 𝐹 ) = ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ) |
17 |
13 16
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐾 ∖ { 0 } ) = ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ) |
18 |
11 17
|
eleqtrd |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ) |
19 |
|
eqid |
⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) |
20 |
|
cnflddiv |
⊢ / = ( /r ‘ ℂfld ) |
21 |
|
eqid |
⊢ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) = ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) |
22 |
|
eqid |
⊢ ( /r ‘ ( ℂfld ↾s 𝐾 ) ) = ( /r ‘ ( ℂfld ↾s 𝐾 ) ) |
23 |
19 20 21 22
|
subrgdv |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 ( /r ‘ ( ℂfld ↾s 𝐾 ) ) 𝐵 ) ) |
24 |
6 7 18 23
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 ( /r ‘ ( ℂfld ↾s 𝐾 ) ) 𝐵 ) ) |
25 |
15
|
fveq2d |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( /r ‘ 𝐹 ) = ( /r ‘ ( ℂfld ↾s 𝐾 ) ) ) |
26 |
25
|
oveqd |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 ( /r ‘ 𝐹 ) 𝐵 ) = ( 𝐴 ( /r ‘ ( ℂfld ↾s 𝐾 ) ) 𝐵 ) ) |
27 |
24 26
|
eqtr4d |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 ( /r ‘ 𝐹 ) 𝐵 ) ) |