Step |
Hyp |
Ref |
Expression |
1 |
|
cvsdiv.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
cvsdiv.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
1 2
|
cvsdiv |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) = ( 𝐴 ( /r ‘ 𝐹 ) 𝐵 ) ) |
4 |
|
simpl |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝑊 ∈ ℂVec ) |
5 |
4
|
cvslvec |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝑊 ∈ LVec ) |
6 |
1
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
7 |
|
drngring |
⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring ) |
8 |
5 6 7
|
3syl |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐹 ∈ Ring ) |
9 |
|
simpr1 |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ 𝐾 ) |
10 |
|
simpr2 |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ 𝐾 ) |
11 |
|
simpr3 |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ≠ 0 ) |
12 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( 𝐾 ∖ { 0 } ) ↔ ( 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) |
13 |
10 11 12
|
sylanbrc |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ( 𝐾 ∖ { 0 } ) ) |
14 |
1 2
|
cvsunit |
⊢ ( 𝑊 ∈ ℂVec → ( 𝐾 ∖ { 0 } ) = ( Unit ‘ 𝐹 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐾 ∖ { 0 } ) = ( Unit ‘ 𝐹 ) ) |
16 |
13 15
|
eleqtrd |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ( Unit ‘ 𝐹 ) ) |
17 |
|
eqid |
⊢ ( Unit ‘ 𝐹 ) = ( Unit ‘ 𝐹 ) |
18 |
|
eqid |
⊢ ( /r ‘ 𝐹 ) = ( /r ‘ 𝐹 ) |
19 |
2 17 18
|
dvrcl |
⊢ ( ( 𝐹 ∈ Ring ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ ( Unit ‘ 𝐹 ) ) → ( 𝐴 ( /r ‘ 𝐹 ) 𝐵 ) ∈ 𝐾 ) |
20 |
8 9 16 19
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 ( /r ‘ 𝐹 ) 𝐵 ) ∈ 𝐾 ) |
21 |
3 20
|
eqeltrd |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ∈ 𝐾 ) |