Step |
Hyp |
Ref |
Expression |
1 |
|
cvsdiveqd.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
cvsdiveqd.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
3 |
|
cvsdiveqd.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
cvsdiveqd.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
5 |
|
cvsdiveqd.w |
⊢ ( 𝜑 → 𝑊 ∈ ℂVec ) |
6 |
|
cvsdiveqd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
7 |
|
cvsdiveqd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
8 |
|
cvsdiveqd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
9 |
|
cvsdiveqd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
10 |
|
cvsdiveqd.1 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
11 |
|
cvsdiveqd.2 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
12 |
|
cvsdiveqd.3 |
⊢ ( 𝜑 → 𝑋 = ( ( 𝐴 / 𝐵 ) · 𝑌 ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 / 𝐴 ) · 𝑋 ) = ( ( 𝐵 / 𝐴 ) · ( ( 𝐴 / 𝐵 ) · 𝑌 ) ) ) |
14 |
5
|
cvsclm |
⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
15 |
3 4
|
clmsscn |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → 𝐾 ⊆ ℂ ) |
17 |
16 7
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
18 |
16 6
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
19 |
17 18 11 10
|
divcan6d |
⊢ ( 𝜑 → ( ( 𝐵 / 𝐴 ) · ( 𝐴 / 𝐵 ) ) = 1 ) |
20 |
19
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐵 / 𝐴 ) · ( 𝐴 / 𝐵 ) ) · 𝑌 ) = ( 1 · 𝑌 ) ) |
21 |
3 4
|
cvsdivcl |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐵 ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → ( 𝐵 / 𝐴 ) ∈ 𝐾 ) |
22 |
5 7 6 10 21
|
syl13anc |
⊢ ( 𝜑 → ( 𝐵 / 𝐴 ) ∈ 𝐾 ) |
23 |
3 4
|
cvsdivcl |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ∈ 𝐾 ) |
24 |
5 6 7 11 23
|
syl13anc |
⊢ ( 𝜑 → ( 𝐴 / 𝐵 ) ∈ 𝐾 ) |
25 |
1 3 2 4
|
clmvsass |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( ( 𝐵 / 𝐴 ) ∈ 𝐾 ∧ ( 𝐴 / 𝐵 ) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝐵 / 𝐴 ) · ( 𝐴 / 𝐵 ) ) · 𝑌 ) = ( ( 𝐵 / 𝐴 ) · ( ( 𝐴 / 𝐵 ) · 𝑌 ) ) ) |
26 |
14 22 24 9 25
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝐵 / 𝐴 ) · ( 𝐴 / 𝐵 ) ) · 𝑌 ) = ( ( 𝐵 / 𝐴 ) · ( ( 𝐴 / 𝐵 ) · 𝑌 ) ) ) |
27 |
1 2
|
clmvs1 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑌 ∈ 𝑉 ) → ( 1 · 𝑌 ) = 𝑌 ) |
28 |
14 9 27
|
syl2anc |
⊢ ( 𝜑 → ( 1 · 𝑌 ) = 𝑌 ) |
29 |
20 26 28
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝐵 / 𝐴 ) · ( ( 𝐴 / 𝐵 ) · 𝑌 ) ) = 𝑌 ) |
30 |
13 29
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 / 𝐴 ) · 𝑋 ) = 𝑌 ) |