Metamath Proof Explorer
Description: A subcomplex vector space is a (left) vector space. (Contributed by Thierry Arnoux, 22-May-2019)
|
|
Ref |
Expression |
|
Hypothesis |
cvslvec.1 |
⊢ ( 𝜑 → 𝑊 ∈ ℂVec ) |
|
Assertion |
cvslvec |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cvslvec.1 |
⊢ ( 𝜑 → 𝑊 ∈ ℂVec ) |
2 |
|
df-cvs |
⊢ ℂVec = ( ℂMod ∩ LVec ) |
3 |
2
|
elin2 |
⊢ ( 𝑊 ∈ ℂVec ↔ ( 𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec ) ) |
4 |
3
|
simprbi |
⊢ ( 𝑊 ∈ ℂVec → 𝑊 ∈ LVec ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |