Metamath Proof Explorer
		
		
		
		Description:  A subcomplex vector space is a (left) vector space.  (Contributed by Thierry Arnoux, 22-May-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | cvslvec.1 | ⊢ ( 𝜑  →  𝑊  ∈  ℂVec ) | 
				
					|  | Assertion | cvslvec | ⊢  ( 𝜑  →  𝑊  ∈  LVec ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvslvec.1 | ⊢ ( 𝜑  →  𝑊  ∈  ℂVec ) | 
						
							| 2 |  | df-cvs | ⊢ ℂVec  =  ( ℂMod  ∩  LVec ) | 
						
							| 3 | 2 | elin2 | ⊢ ( 𝑊  ∈  ℂVec  ↔  ( 𝑊  ∈  ℂMod  ∧  𝑊  ∈  LVec ) ) | 
						
							| 4 | 3 | simprbi | ⊢ ( 𝑊  ∈  ℂVec  →  𝑊  ∈  LVec ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LVec ) |