Step |
Hyp |
Ref |
Expression |
1 |
|
cvsdiveqd.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
cvsdiveqd.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
3 |
|
cvsdiveqd.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
cvsdiveqd.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
5 |
|
cvsdiveqd.w |
⊢ ( 𝜑 → 𝑊 ∈ ℂVec ) |
6 |
|
cvsdiveqd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
7 |
|
cvsdiveqd.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
8 |
|
cvsdiveqd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
9 |
|
cvsdiveqd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
10 |
|
cvsdiveqd.1 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
11 |
|
cvsmuleqdivd.1 |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) = ( 𝐵 · 𝑌 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) · ( 𝐴 · 𝑋 ) ) = ( ( 1 / 𝐴 ) · ( 𝐵 · 𝑌 ) ) ) |
13 |
5
|
cvsclm |
⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
14 |
3 4
|
clmsscn |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝐾 ⊆ ℂ ) |
16 |
15 6
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
17 |
16 10
|
recid2d |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) · 𝐴 ) = 1 ) |
18 |
17
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 / 𝐴 ) · 𝐴 ) · 𝑋 ) = ( 1 · 𝑋 ) ) |
19 |
3
|
clm1 |
⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ 𝐹 ) ) |
20 |
13 19
|
syl |
⊢ ( 𝜑 → 1 = ( 1r ‘ 𝐹 ) ) |
21 |
3
|
clmring |
⊢ ( 𝑊 ∈ ℂMod → 𝐹 ∈ Ring ) |
22 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
23 |
4 22
|
ringidcl |
⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
24 |
13 21 23
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
25 |
20 24
|
eqeltrd |
⊢ ( 𝜑 → 1 ∈ 𝐾 ) |
26 |
3 4
|
cvsdivcl |
⊢ ( ( 𝑊 ∈ ℂVec ∧ ( 1 ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → ( 1 / 𝐴 ) ∈ 𝐾 ) |
27 |
5 25 6 10 26
|
syl13anc |
⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ 𝐾 ) |
28 |
1 3 2 4
|
clmvsass |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( ( 1 / 𝐴 ) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( 1 / 𝐴 ) · 𝐴 ) · 𝑋 ) = ( ( 1 / 𝐴 ) · ( 𝐴 · 𝑋 ) ) ) |
29 |
13 27 6 8 28
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 1 / 𝐴 ) · 𝐴 ) · 𝑋 ) = ( ( 1 / 𝐴 ) · ( 𝐴 · 𝑋 ) ) ) |
30 |
1 2
|
clmvs1 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( 1 · 𝑋 ) = 𝑋 ) |
31 |
13 8 30
|
syl2anc |
⊢ ( 𝜑 → ( 1 · 𝑋 ) = 𝑋 ) |
32 |
18 29 31
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) · ( 𝐴 · 𝑋 ) ) = 𝑋 ) |
33 |
15 7
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
34 |
33 16 10
|
divrec2d |
⊢ ( 𝜑 → ( 𝐵 / 𝐴 ) = ( ( 1 / 𝐴 ) · 𝐵 ) ) |
35 |
34
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐵 / 𝐴 ) · 𝑌 ) = ( ( ( 1 / 𝐴 ) · 𝐵 ) · 𝑌 ) ) |
36 |
1 3 2 4
|
clmvsass |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( ( 1 / 𝐴 ) ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 1 / 𝐴 ) · 𝐵 ) · 𝑌 ) = ( ( 1 / 𝐴 ) · ( 𝐵 · 𝑌 ) ) ) |
37 |
13 27 7 9 36
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 1 / 𝐴 ) · 𝐵 ) · 𝑌 ) = ( ( 1 / 𝐴 ) · ( 𝐵 · 𝑌 ) ) ) |
38 |
35 37
|
eqtr2d |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) · ( 𝐵 · 𝑌 ) ) = ( ( 𝐵 / 𝐴 ) · 𝑌 ) ) |
39 |
12 32 38
|
3eqtr3d |
⊢ ( 𝜑 → 𝑋 = ( ( 𝐵 / 𝐴 ) · 𝑌 ) ) |