Step |
Hyp |
Ref |
Expression |
1 |
|
cvsdiv.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
cvsdiv.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
|
id |
⊢ ( 𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec ) |
4 |
3
|
cvsclm |
⊢ ( 𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod ) |
5 |
1
|
clm0 |
⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ 𝐹 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝑊 ∈ ℂVec → 0 = ( 0g ‘ 𝐹 ) ) |
7 |
6
|
sneqd |
⊢ ( 𝑊 ∈ ℂVec → { 0 } = { ( 0g ‘ 𝐹 ) } ) |
8 |
7
|
difeq2d |
⊢ ( 𝑊 ∈ ℂVec → ( 𝐾 ∖ { 0 } ) = ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) |
9 |
3
|
cvslvec |
⊢ ( 𝑊 ∈ ℂVec → 𝑊 ∈ LVec ) |
10 |
1
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
11 |
|
eqid |
⊢ ( Unit ‘ 𝐹 ) = ( Unit ‘ 𝐹 ) |
12 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
13 |
2 11 12
|
isdrng |
⊢ ( 𝐹 ∈ DivRing ↔ ( 𝐹 ∈ Ring ∧ ( Unit ‘ 𝐹 ) = ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) ) |
14 |
13
|
simprbi |
⊢ ( 𝐹 ∈ DivRing → ( Unit ‘ 𝐹 ) = ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) |
15 |
9 10 14
|
3syl |
⊢ ( 𝑊 ∈ ℂVec → ( Unit ‘ 𝐹 ) = ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) |
16 |
8 15
|
eqtr4d |
⊢ ( 𝑊 ∈ ℂVec → ( 𝐾 ∖ { 0 } ) = ( Unit ‘ 𝐹 ) ) |