Step |
Hyp |
Ref |
Expression |
1 |
|
cvxcl.1 |
⊢ ( 𝜑 → 𝐷 ⊆ ℝ ) |
2 |
|
cvxcl.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 [,] 𝑦 ) ⊆ 𝐷 ) |
3 |
2
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 [,] 𝑦 ) ⊆ 𝐷 ) |
4 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑋 < 𝑌 ) → ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 [,] 𝑦 ) ⊆ 𝐷 ) |
5 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑋 ∈ 𝐷 ) |
6 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑌 ∈ 𝐷 ) |
7 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 [,] 𝑦 ) = ( 𝑋 [,] 𝑦 ) ) |
8 |
7
|
sseq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 [,] 𝑦 ) ⊆ 𝐷 ↔ ( 𝑋 [,] 𝑦 ) ⊆ 𝐷 ) ) |
9 |
|
oveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 [,] 𝑦 ) = ( 𝑋 [,] 𝑌 ) ) |
10 |
9
|
sseq1d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 [,] 𝑦 ) ⊆ 𝐷 ↔ ( 𝑋 [,] 𝑌 ) ⊆ 𝐷 ) ) |
11 |
8 10
|
rspc2v |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) → ( ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 [,] 𝑦 ) ⊆ 𝐷 → ( 𝑋 [,] 𝑌 ) ⊆ 𝐷 ) ) |
12 |
5 6 11
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 [,] 𝑦 ) ⊆ 𝐷 → ( 𝑋 [,] 𝑌 ) ⊆ 𝐷 ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 [,] 𝑦 ) ⊆ 𝐷 → ( 𝑋 [,] 𝑌 ) ⊆ 𝐷 ) ) |
14 |
4 13
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 [,] 𝑌 ) ⊆ 𝐷 ) |
15 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
16 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
17 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑇 ∈ ( 0 [,] 1 ) ) |
18 |
16 17
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑇 ∈ ℝ ) |
19 |
18
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑇 ∈ ℂ ) |
20 |
|
nncan |
⊢ ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
21 |
15 19 20
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
22 |
21
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 1 − ( 1 − 𝑇 ) ) · 𝑋 ) = ( 𝑇 · 𝑋 ) ) |
23 |
22
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) = ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) = ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) |
25 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝐷 ⊆ ℝ ) |
26 |
25 5
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑋 ∈ ℝ ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑋 ∈ ℝ ) |
28 |
25 6
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑌 ∈ ℝ ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑌 ∈ ℝ ) |
30 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑋 < 𝑌 ) |
31 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑋 < 𝑌 ) → 𝑇 ∈ ( 0 [,] 1 ) ) |
32 |
|
iirev |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) |
33 |
31 32
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑋 < 𝑌 ) → ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) |
34 |
|
lincmb01cmp |
⊢ ( ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋 < 𝑌 ) ∧ ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ∈ ( 𝑋 [,] 𝑌 ) ) |
35 |
27 29 30 33 34
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ∈ ( 𝑋 [,] 𝑌 ) ) |
36 |
24 35
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ∈ ( 𝑋 [,] 𝑌 ) ) |
37 |
14 36
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑋 < 𝑌 ) → ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ∈ 𝐷 ) |
38 |
|
oveq2 |
⊢ ( 𝑋 = 𝑌 → ( 𝑇 · 𝑋 ) = ( 𝑇 · 𝑌 ) ) |
39 |
38
|
oveq1d |
⊢ ( 𝑋 = 𝑌 → ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) = ( ( 𝑇 · 𝑌 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) |
40 |
|
pncan3 |
⊢ ( ( 𝑇 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑇 + ( 1 − 𝑇 ) ) = 1 ) |
41 |
19 15 40
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝑇 + ( 1 − 𝑇 ) ) = 1 ) |
42 |
41
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑇 + ( 1 − 𝑇 ) ) · 𝑌 ) = ( 1 · 𝑌 ) ) |
43 |
|
1re |
⊢ 1 ∈ ℝ |
44 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ 𝑇 ∈ ℝ ) → ( 1 − 𝑇 ) ∈ ℝ ) |
45 |
43 18 44
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 1 − 𝑇 ) ∈ ℝ ) |
46 |
45
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 1 − 𝑇 ) ∈ ℂ ) |
47 |
28
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑌 ∈ ℂ ) |
48 |
19 46 47
|
adddird |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑇 + ( 1 − 𝑇 ) ) · 𝑌 ) = ( ( 𝑇 · 𝑌 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ) |
49 |
47
|
mulid2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 1 · 𝑌 ) = 𝑌 ) |
50 |
42 48 49
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑇 · 𝑌 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) = 𝑌 ) |
51 |
39 50
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑋 = 𝑌 ) → ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) = 𝑌 ) |
52 |
6
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑋 = 𝑌 ) → 𝑌 ∈ 𝐷 ) |
53 |
51 52
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑋 = 𝑌 ) → ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ∈ 𝐷 ) |
54 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑌 < 𝑋 ) → ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 [,] 𝑦 ) ⊆ 𝐷 ) |
55 |
|
oveq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 [,] 𝑦 ) = ( 𝑌 [,] 𝑦 ) ) |
56 |
55
|
sseq1d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 [,] 𝑦 ) ⊆ 𝐷 ↔ ( 𝑌 [,] 𝑦 ) ⊆ 𝐷 ) ) |
57 |
|
oveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝑌 [,] 𝑦 ) = ( 𝑌 [,] 𝑋 ) ) |
58 |
57
|
sseq1d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑌 [,] 𝑦 ) ⊆ 𝐷 ↔ ( 𝑌 [,] 𝑋 ) ⊆ 𝐷 ) ) |
59 |
56 58
|
rspc2v |
⊢ ( ( 𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ) → ( ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 [,] 𝑦 ) ⊆ 𝐷 → ( 𝑌 [,] 𝑋 ) ⊆ 𝐷 ) ) |
60 |
6 5 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 [,] 𝑦 ) ⊆ 𝐷 → ( 𝑌 [,] 𝑋 ) ⊆ 𝐷 ) ) |
61 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑌 < 𝑋 ) → ( ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( 𝑥 [,] 𝑦 ) ⊆ 𝐷 → ( 𝑌 [,] 𝑋 ) ⊆ 𝐷 ) ) |
62 |
54 61
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑌 < 𝑋 ) → ( 𝑌 [,] 𝑋 ) ⊆ 𝐷 ) |
63 |
26
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑋 ∈ ℂ ) |
64 |
19 63
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝑇 · 𝑋 ) ∈ ℂ ) |
65 |
46 47
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 1 − 𝑇 ) · 𝑌 ) ∈ ℂ ) |
66 |
64 65
|
addcomd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) = ( ( ( 1 − 𝑇 ) · 𝑌 ) + ( 𝑇 · 𝑋 ) ) ) |
67 |
66
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑌 < 𝑋 ) → ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) = ( ( ( 1 − 𝑇 ) · 𝑌 ) + ( 𝑇 · 𝑋 ) ) ) |
68 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑌 < 𝑋 ) → 𝑌 ∈ ℝ ) |
69 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑌 < 𝑋 ) → 𝑋 ∈ ℝ ) |
70 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑌 < 𝑋 ) → 𝑌 < 𝑋 ) |
71 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑌 < 𝑋 ) → 𝑇 ∈ ( 0 [,] 1 ) ) |
72 |
|
lincmb01cmp |
⊢ ( ( ( 𝑌 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑌 < 𝑋 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝑌 ) + ( 𝑇 · 𝑋 ) ) ∈ ( 𝑌 [,] 𝑋 ) ) |
73 |
68 69 70 71 72
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑌 < 𝑋 ) → ( ( ( 1 − 𝑇 ) · 𝑌 ) + ( 𝑇 · 𝑋 ) ) ∈ ( 𝑌 [,] 𝑋 ) ) |
74 |
67 73
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑌 < 𝑋 ) → ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ∈ ( 𝑌 [,] 𝑋 ) ) |
75 |
62 74
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝑌 < 𝑋 ) → ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ∈ 𝐷 ) |
76 |
26 28
|
lttri4d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ∨ 𝑌 < 𝑋 ) ) |
77 |
37 53 75 76
|
mpjao3dan |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑇 · 𝑋 ) + ( ( 1 − 𝑇 ) · 𝑌 ) ) ∈ 𝐷 ) |