Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
2 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) |
3 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
5 |
1 2 4
|
adddird |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 + 𝐶 ) · ( log ‘ 𝐴 ) ) = ( ( 𝐵 · ( log ‘ 𝐴 ) ) + ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) |
6 |
5
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( exp ‘ ( ( 𝐵 + 𝐶 ) · ( log ‘ 𝐴 ) ) ) = ( exp ‘ ( ( 𝐵 · ( log ‘ 𝐴 ) ) + ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) ) |
7 |
1 4
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
8 |
2 4
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
9 |
|
efadd |
⊢ ( ( ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ ∧ ( 𝐶 · ( log ‘ 𝐴 ) ) ∈ ℂ ) → ( exp ‘ ( ( 𝐵 · ( log ‘ 𝐴 ) ) + ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) ) |
10 |
7 8 9
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( exp ‘ ( ( 𝐵 · ( log ‘ 𝐴 ) ) + ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) ) |
11 |
6 10
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( exp ‘ ( ( 𝐵 + 𝐶 ) · ( log ‘ 𝐴 ) ) ) = ( ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) ) |
12 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
13 |
|
simp1r |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ≠ 0 ) |
14 |
|
addcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) ∈ ℂ ) |
15 |
14
|
3adant1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) ∈ ℂ ) |
16 |
|
cxpef |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( 𝐵 + 𝐶 ) ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + 𝐶 ) ) = ( exp ‘ ( ( 𝐵 + 𝐶 ) · ( log ‘ 𝐴 ) ) ) ) |
17 |
12 13 15 16
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + 𝐶 ) ) = ( exp ‘ ( ( 𝐵 + 𝐶 ) · ( log ‘ 𝐴 ) ) ) ) |
18 |
|
cxpef |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
19 |
12 13 1 18
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
20 |
|
cxpef |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) |
21 |
12 13 2 20
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) |
22 |
19 21
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 𝐶 ) ) = ( ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) · ( exp ‘ ( 𝐶 · ( log ‘ 𝐴 ) ) ) ) ) |
23 |
11 17 22
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 𝐶 ) ) ) |