Metamath Proof Explorer
		
		
		
		Description:  Sum of exponents law for complex exponentiation.  Proposition 10-4.2(a)
       of Gleason p. 135.  (Contributed by Mario Carneiro, 30-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | cxp0d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
					
						|  |  | cxpefd.2 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
					
						|  |  | cxpefd.3 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
					
						|  |  | cxpaddd.4 | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
				
					|  | Assertion | cxpaddd | ⊢  ( 𝜑  →  ( 𝐴 ↑𝑐 ( 𝐵  +  𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 )  ·  ( 𝐴 ↑𝑐 𝐶 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cxp0d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | cxpefd.2 | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 3 |  | cxpefd.3 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 4 |  | cxpaddd.4 | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 5 |  | cxpadd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 ↑𝑐 ( 𝐵  +  𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 )  ·  ( 𝐴 ↑𝑐 𝐶 ) ) ) | 
						
							| 6 | 1 2 3 4 5 | syl211anc | ⊢ ( 𝜑  →  ( 𝐴 ↑𝑐 ( 𝐵  +  𝐶 ) )  =  ( ( 𝐴 ↑𝑐 𝐵 )  ·  ( 𝐴 ↑𝑐 𝐶 ) ) ) |