Step |
Hyp |
Ref |
Expression |
1 |
|
cxpaddle.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
cxpaddle.2 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
3 |
|
cxpaddle.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
4 |
|
cxpaddle.4 |
⊢ ( 𝜑 → 0 ≤ 𝐵 ) |
5 |
|
cxpaddle.5 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
6 |
|
cxpaddle.6 |
⊢ ( 𝜑 → 𝐶 ≤ 1 ) |
7 |
1 3
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
8 |
1 3 2 4
|
addge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 + 𝐵 ) ) |
9 |
5
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
10 |
7 8 9
|
recxpcld |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ∈ ℝ ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ∈ ℂ ) |
13 |
12
|
mulid2d |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( 1 · ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) = ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) |
14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 𝐴 ∈ ℝ ) |
15 |
7
|
anim1i |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 + 𝐵 ) ) ) |
16 |
|
elrp |
⊢ ( ( 𝐴 + 𝐵 ) ∈ ℝ+ ↔ ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 + 𝐵 ) ) ) |
17 |
15 16
|
sylibr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( 𝐴 + 𝐵 ) ∈ ℝ+ ) |
18 |
14 17
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( 𝐴 / ( 𝐴 + 𝐵 ) ) ∈ ℝ ) |
19 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 𝐵 ∈ ℝ ) |
20 |
19 17
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( 𝐵 / ( 𝐴 + 𝐵 ) ) ∈ ℝ ) |
21 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 0 ≤ 𝐴 ) |
22 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 0 < ( 𝐴 + 𝐵 ) ) |
24 |
|
divge0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 + 𝐵 ) ) ) → 0 ≤ ( 𝐴 / ( 𝐴 + 𝐵 ) ) ) |
25 |
14 21 22 23 24
|
syl22anc |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 0 ≤ ( 𝐴 / ( 𝐴 + 𝐵 ) ) ) |
26 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 𝐶 ∈ ℝ ) |
27 |
18 25 26
|
recxpcld |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐴 / ( 𝐴 + 𝐵 ) ) ↑𝑐 𝐶 ) ∈ ℝ ) |
28 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 0 ≤ 𝐵 ) |
29 |
|
divge0 |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ∧ ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 + 𝐵 ) ) ) → 0 ≤ ( 𝐵 / ( 𝐴 + 𝐵 ) ) ) |
30 |
19 28 22 23 29
|
syl22anc |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 0 ≤ ( 𝐵 / ( 𝐴 + 𝐵 ) ) ) |
31 |
20 30 26
|
recxpcld |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐵 / ( 𝐴 + 𝐵 ) ) ↑𝑐 𝐶 ) ∈ ℝ ) |
32 |
1 3
|
addge01d |
⊢ ( 𝜑 → ( 0 ≤ 𝐵 ↔ 𝐴 ≤ ( 𝐴 + 𝐵 ) ) ) |
33 |
4 32
|
mpbid |
⊢ ( 𝜑 → 𝐴 ≤ ( 𝐴 + 𝐵 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 𝐴 ≤ ( 𝐴 + 𝐵 ) ) |
35 |
22
|
recnd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
36 |
35
|
mulid1d |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) · 1 ) = ( 𝐴 + 𝐵 ) ) |
37 |
34 36
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 𝐴 ≤ ( ( 𝐴 + 𝐵 ) · 1 ) ) |
38 |
|
1red |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 1 ∈ ℝ ) |
39 |
|
ledivmul |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 + 𝐵 ) ) ) → ( ( 𝐴 / ( 𝐴 + 𝐵 ) ) ≤ 1 ↔ 𝐴 ≤ ( ( 𝐴 + 𝐵 ) · 1 ) ) ) |
40 |
14 38 22 23 39
|
syl112anc |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐴 / ( 𝐴 + 𝐵 ) ) ≤ 1 ↔ 𝐴 ≤ ( ( 𝐴 + 𝐵 ) · 1 ) ) ) |
41 |
37 40
|
mpbird |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( 𝐴 / ( 𝐴 + 𝐵 ) ) ≤ 1 ) |
42 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 𝐶 ∈ ℝ+ ) |
43 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 𝐶 ≤ 1 ) |
44 |
18 25 41 42 43
|
cxpaddlelem |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( 𝐴 / ( 𝐴 + 𝐵 ) ) ≤ ( ( 𝐴 / ( 𝐴 + 𝐵 ) ) ↑𝑐 𝐶 ) ) |
45 |
3 1
|
addge02d |
⊢ ( 𝜑 → ( 0 ≤ 𝐴 ↔ 𝐵 ≤ ( 𝐴 + 𝐵 ) ) ) |
46 |
2 45
|
mpbid |
⊢ ( 𝜑 → 𝐵 ≤ ( 𝐴 + 𝐵 ) ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 𝐵 ≤ ( 𝐴 + 𝐵 ) ) |
48 |
47 36
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 𝐵 ≤ ( ( 𝐴 + 𝐵 ) · 1 ) ) |
49 |
|
ledivmul |
⊢ ( ( 𝐵 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 + 𝐵 ) ) ) → ( ( 𝐵 / ( 𝐴 + 𝐵 ) ) ≤ 1 ↔ 𝐵 ≤ ( ( 𝐴 + 𝐵 ) · 1 ) ) ) |
50 |
19 38 22 23 49
|
syl112anc |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐵 / ( 𝐴 + 𝐵 ) ) ≤ 1 ↔ 𝐵 ≤ ( ( 𝐴 + 𝐵 ) · 1 ) ) ) |
51 |
48 50
|
mpbird |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( 𝐵 / ( 𝐴 + 𝐵 ) ) ≤ 1 ) |
52 |
20 30 51 42 43
|
cxpaddlelem |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( 𝐵 / ( 𝐴 + 𝐵 ) ) ≤ ( ( 𝐵 / ( 𝐴 + 𝐵 ) ) ↑𝑐 𝐶 ) ) |
53 |
18 20 27 31 44 52
|
le2addd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐴 / ( 𝐴 + 𝐵 ) ) + ( 𝐵 / ( 𝐴 + 𝐵 ) ) ) ≤ ( ( ( 𝐴 / ( 𝐴 + 𝐵 ) ) ↑𝑐 𝐶 ) + ( ( 𝐵 / ( 𝐴 + 𝐵 ) ) ↑𝑐 𝐶 ) ) ) |
54 |
14
|
recnd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 𝐴 ∈ ℂ ) |
55 |
19
|
recnd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 𝐵 ∈ ℂ ) |
56 |
17
|
rpne0d |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( 𝐴 + 𝐵 ) ≠ 0 ) |
57 |
54 55 35 56
|
divdird |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) / ( 𝐴 + 𝐵 ) ) = ( ( 𝐴 / ( 𝐴 + 𝐵 ) ) + ( 𝐵 / ( 𝐴 + 𝐵 ) ) ) ) |
58 |
35 56
|
dividd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) / ( 𝐴 + 𝐵 ) ) = 1 ) |
59 |
57 58
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐴 / ( 𝐴 + 𝐵 ) ) + ( 𝐵 / ( 𝐴 + 𝐵 ) ) ) = 1 ) |
60 |
9
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
61 |
60
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 𝐶 ∈ ℂ ) |
62 |
14 21 17 61
|
divcxpd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐴 / ( 𝐴 + 𝐵 ) ) ↑𝑐 𝐶 ) = ( ( 𝐴 ↑𝑐 𝐶 ) / ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) ) |
63 |
19 28 17 61
|
divcxpd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐵 / ( 𝐴 + 𝐵 ) ) ↑𝑐 𝐶 ) = ( ( 𝐵 ↑𝑐 𝐶 ) / ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) ) |
64 |
62 63
|
oveq12d |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( ( 𝐴 / ( 𝐴 + 𝐵 ) ) ↑𝑐 𝐶 ) + ( ( 𝐵 / ( 𝐴 + 𝐵 ) ) ↑𝑐 𝐶 ) ) = ( ( ( 𝐴 ↑𝑐 𝐶 ) / ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) + ( ( 𝐵 ↑𝑐 𝐶 ) / ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) ) ) |
65 |
1 2 9
|
recxpcld |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℝ ) |
66 |
65
|
recnd |
⊢ ( 𝜑 → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( 𝐴 ↑𝑐 𝐶 ) ∈ ℂ ) |
68 |
3 4 9
|
recxpcld |
⊢ ( 𝜑 → ( 𝐵 ↑𝑐 𝐶 ) ∈ ℝ ) |
69 |
68
|
recnd |
⊢ ( 𝜑 → ( 𝐵 ↑𝑐 𝐶 ) ∈ ℂ ) |
70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( 𝐵 ↑𝑐 𝐶 ) ∈ ℂ ) |
71 |
17 26
|
rpcxpcld |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ∈ ℝ+ ) |
72 |
71
|
rpne0d |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ≠ 0 ) |
73 |
67 70 12 72
|
divdird |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( ( 𝐴 ↑𝑐 𝐶 ) + ( 𝐵 ↑𝑐 𝐶 ) ) / ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) = ( ( ( 𝐴 ↑𝑐 𝐶 ) / ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) + ( ( 𝐵 ↑𝑐 𝐶 ) / ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) ) ) |
74 |
64 73
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( ( 𝐴 / ( 𝐴 + 𝐵 ) ) ↑𝑐 𝐶 ) + ( ( 𝐵 / ( 𝐴 + 𝐵 ) ) ↑𝑐 𝐶 ) ) = ( ( ( 𝐴 ↑𝑐 𝐶 ) + ( 𝐵 ↑𝑐 𝐶 ) ) / ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) ) |
75 |
53 59 74
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → 1 ≤ ( ( ( 𝐴 ↑𝑐 𝐶 ) + ( 𝐵 ↑𝑐 𝐶 ) ) / ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) ) |
76 |
65 68
|
readdcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑𝑐 𝐶 ) + ( 𝐵 ↑𝑐 𝐶 ) ) ∈ ℝ ) |
77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐴 ↑𝑐 𝐶 ) + ( 𝐵 ↑𝑐 𝐶 ) ) ∈ ℝ ) |
78 |
38 77 71
|
lemuldivd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 1 · ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) ≤ ( ( 𝐴 ↑𝑐 𝐶 ) + ( 𝐵 ↑𝑐 𝐶 ) ) ↔ 1 ≤ ( ( ( 𝐴 ↑𝑐 𝐶 ) + ( 𝐵 ↑𝑐 𝐶 ) ) / ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) ) ) |
79 |
75 78
|
mpbird |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( 1 · ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) ≤ ( ( 𝐴 ↑𝑐 𝐶 ) + ( 𝐵 ↑𝑐 𝐶 ) ) ) |
80 |
13 79
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 0 < ( 𝐴 + 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ≤ ( ( 𝐴 ↑𝑐 𝐶 ) + ( 𝐵 ↑𝑐 𝐶 ) ) ) |
81 |
5
|
rpne0d |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
82 |
60 81
|
0cxpd |
⊢ ( 𝜑 → ( 0 ↑𝑐 𝐶 ) = 0 ) |
83 |
1 2 9
|
cxpge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 ↑𝑐 𝐶 ) ) |
84 |
3 4 9
|
cxpge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐵 ↑𝑐 𝐶 ) ) |
85 |
65 68 83 84
|
addge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 𝐴 ↑𝑐 𝐶 ) + ( 𝐵 ↑𝑐 𝐶 ) ) ) |
86 |
82 85
|
eqbrtrd |
⊢ ( 𝜑 → ( 0 ↑𝑐 𝐶 ) ≤ ( ( 𝐴 ↑𝑐 𝐶 ) + ( 𝐵 ↑𝑐 𝐶 ) ) ) |
87 |
|
oveq1 |
⊢ ( 0 = ( 𝐴 + 𝐵 ) → ( 0 ↑𝑐 𝐶 ) = ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ) |
88 |
87
|
breq1d |
⊢ ( 0 = ( 𝐴 + 𝐵 ) → ( ( 0 ↑𝑐 𝐶 ) ≤ ( ( 𝐴 ↑𝑐 𝐶 ) + ( 𝐵 ↑𝑐 𝐶 ) ) ↔ ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ≤ ( ( 𝐴 ↑𝑐 𝐶 ) + ( 𝐵 ↑𝑐 𝐶 ) ) ) ) |
89 |
86 88
|
syl5ibcom |
⊢ ( 𝜑 → ( 0 = ( 𝐴 + 𝐵 ) → ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ≤ ( ( 𝐴 ↑𝑐 𝐶 ) + ( 𝐵 ↑𝑐 𝐶 ) ) ) ) |
90 |
89
|
imp |
⊢ ( ( 𝜑 ∧ 0 = ( 𝐴 + 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ≤ ( ( 𝐴 ↑𝑐 𝐶 ) + ( 𝐵 ↑𝑐 𝐶 ) ) ) |
91 |
|
0re |
⊢ 0 ∈ ℝ |
92 |
|
leloe |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐴 + 𝐵 ) ∈ ℝ ) → ( 0 ≤ ( 𝐴 + 𝐵 ) ↔ ( 0 < ( 𝐴 + 𝐵 ) ∨ 0 = ( 𝐴 + 𝐵 ) ) ) ) |
93 |
91 7 92
|
sylancr |
⊢ ( 𝜑 → ( 0 ≤ ( 𝐴 + 𝐵 ) ↔ ( 0 < ( 𝐴 + 𝐵 ) ∨ 0 = ( 𝐴 + 𝐵 ) ) ) ) |
94 |
8 93
|
mpbid |
⊢ ( 𝜑 → ( 0 < ( 𝐴 + 𝐵 ) ∨ 0 = ( 𝐴 + 𝐵 ) ) ) |
95 |
80 90 94
|
mpjaodan |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) ↑𝑐 𝐶 ) ≤ ( ( 𝐴 ↑𝑐 𝐶 ) + ( 𝐵 ↑𝑐 𝐶 ) ) ) |