Step |
Hyp |
Ref |
Expression |
1 |
|
cxpval |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = if ( 𝐴 = 0 , if ( 𝐵 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
2 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
3 |
|
0cn |
⊢ 0 ∈ ℂ |
4 |
2 3
|
ifcli |
⊢ if ( 𝐵 = 0 , 1 , 0 ) ∈ ℂ |
5 |
4
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐴 = 0 ) → if ( 𝐵 = 0 , 1 , 0 ) ∈ ℂ ) |
6 |
|
df-ne |
⊢ ( 𝐴 ≠ 0 ↔ ¬ 𝐴 = 0 ) |
7 |
|
id |
⊢ ( 𝐵 ∈ ℂ → 𝐵 ∈ ℂ ) |
8 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
9 |
|
mulcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( log ‘ 𝐴 ) ∈ ℂ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
10 |
7 8 9
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
11 |
10
|
an32s |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐴 ≠ 0 ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
12 |
|
efcl |
⊢ ( ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ → ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
14 |
6 13
|
sylan2br |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ¬ 𝐴 = 0 ) → ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ∈ ℂ ) |
15 |
5 14
|
ifclda |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → if ( 𝐴 = 0 , if ( 𝐵 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
16 |
1 15
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) |