Step |
Hyp |
Ref |
Expression |
1 |
|
cxpcn.d |
⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) |
2 |
|
cxpcn.j |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
3 |
|
cxpcn.k |
⊢ 𝐾 = ( 𝐽 ↾t 𝐷 ) |
4 |
1
|
ellogdm |
⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ+ ) ) ) |
5 |
4
|
simplbi |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ ℂ ) |
6 |
5
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
7 |
1
|
logdmn0 |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ≠ 0 ) |
8 |
7
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ ℂ ) → 𝑥 ≠ 0 ) |
9 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) |
10 |
6 8 9
|
cxpefd |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ ℂ ) → ( 𝑥 ↑𝑐 𝑦 ) = ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) |
11 |
10
|
mpoeq3ia |
⊢ ( 𝑥 ∈ 𝐷 , 𝑦 ∈ ℂ ↦ ( 𝑥 ↑𝑐 𝑦 ) ) = ( 𝑥 ∈ 𝐷 , 𝑦 ∈ ℂ ↦ ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) |
12 |
2
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
13 |
12
|
a1i |
⊢ ( ⊤ → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
14 |
5
|
ssriv |
⊢ 𝐷 ⊆ ℂ |
15 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝐷 ⊆ ℂ ) → ( 𝐽 ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) ) |
16 |
13 14 15
|
sylancl |
⊢ ( ⊤ → ( 𝐽 ↾t 𝐷 ) ∈ ( TopOn ‘ 𝐷 ) ) |
17 |
3 16
|
eqeltrid |
⊢ ( ⊤ → 𝐾 ∈ ( TopOn ‘ 𝐷 ) ) |
18 |
17 13
|
cnmpt2nd |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 , 𝑦 ∈ ℂ ↦ 𝑦 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
19 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐷 → ( ( log ↾ 𝐷 ) ‘ 𝑥 ) = ( log ‘ 𝑥 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ ℂ ) → ( ( log ↾ 𝐷 ) ‘ 𝑥 ) = ( log ‘ 𝑥 ) ) |
21 |
20
|
mpoeq3ia |
⊢ ( 𝑥 ∈ 𝐷 , 𝑦 ∈ ℂ ↦ ( ( log ↾ 𝐷 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐷 , 𝑦 ∈ ℂ ↦ ( log ‘ 𝑥 ) ) |
22 |
17 13
|
cnmpt1st |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 , 𝑦 ∈ ℂ ↦ 𝑥 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐾 ) ) |
23 |
1
|
logcn |
⊢ ( log ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ℂ ) |
24 |
|
ssid |
⊢ ℂ ⊆ ℂ |
25 |
12
|
toponrestid |
⊢ 𝐽 = ( 𝐽 ↾t ℂ ) |
26 |
2 3 25
|
cncfcn |
⊢ ( ( 𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝐷 –cn→ ℂ ) = ( 𝐾 Cn 𝐽 ) ) |
27 |
14 24 26
|
mp2an |
⊢ ( 𝐷 –cn→ ℂ ) = ( 𝐾 Cn 𝐽 ) |
28 |
23 27
|
eleqtri |
⊢ ( log ↾ 𝐷 ) ∈ ( 𝐾 Cn 𝐽 ) |
29 |
28
|
a1i |
⊢ ( ⊤ → ( log ↾ 𝐷 ) ∈ ( 𝐾 Cn 𝐽 ) ) |
30 |
17 13 22 29
|
cnmpt21f |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 , 𝑦 ∈ ℂ ↦ ( ( log ↾ 𝐷 ) ‘ 𝑥 ) ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
31 |
21 30
|
eqeltrrid |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 , 𝑦 ∈ ℂ ↦ ( log ‘ 𝑥 ) ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
32 |
2
|
mulcn |
⊢ · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
33 |
32
|
a1i |
⊢ ( ⊤ → · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
34 |
17 13 18 31 33
|
cnmpt22f |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 , 𝑦 ∈ ℂ ↦ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
35 |
|
efcn |
⊢ exp ∈ ( ℂ –cn→ ℂ ) |
36 |
2
|
cncfcn1 |
⊢ ( ℂ –cn→ ℂ ) = ( 𝐽 Cn 𝐽 ) |
37 |
35 36
|
eleqtri |
⊢ exp ∈ ( 𝐽 Cn 𝐽 ) |
38 |
37
|
a1i |
⊢ ( ⊤ → exp ∈ ( 𝐽 Cn 𝐽 ) ) |
39 |
17 13 34 38
|
cnmpt21f |
⊢ ( ⊤ → ( 𝑥 ∈ 𝐷 , 𝑦 ∈ ℂ ↦ ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
40 |
39
|
mptru |
⊢ ( 𝑥 ∈ 𝐷 , 𝑦 ∈ ℂ ↦ ( exp ‘ ( 𝑦 · ( log ‘ 𝑥 ) ) ) ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) |
41 |
11 40
|
eqeltri |
⊢ ( 𝑥 ∈ 𝐷 , 𝑦 ∈ ℂ ↦ ( 𝑥 ↑𝑐 𝑦 ) ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) |